Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobid Unicode version

Theorem mobid 2303
 Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobid.1
mobid.2
Assertion
Ref Expression
mobid

Proof of Theorem mobid
StepHypRef Expression
1 mobid.1 . . . 4
2 mobid.2 . . . 4
31, 2exbid 1886 . . 3
41, 2eubid 2302 . . 3
53, 4imbi12d 320 . 2
6 df-mo 2287 . 2
7 df-mo 2287 . 2
85, 6, 73bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  E.wex 1612  F/wnf 1616  E!weu 2282  E*wmo 2283 This theorem is referenced by:  mobidv  2305  moanim  2350  rmobida  3045  rmoeq1f  3053  funcnvmptOLD  27509  funcnvmpt  27510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854 This theorem depends on definitions:  df-bi 185  df-ex 1613  df-nf 1617  df-eu 2286  df-mo 2287
 Copyright terms: Public domain W3C validator