![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modaddmodup | Unicode version |
Description: The sum of an integer modulo a positive integer and another integer minus the positive integer equals the sum of the two integers modulo the positive integer if the other integer is in the upper part of the range between 0 and the positive integer. (Contributed by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
modaddmodup |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoelz 11829 | . . . . . . . 8 | |
2 | 1 | zred 10994 | . . . . . . 7 |
3 | 2 | adantr 465 | . . . . . 6 |
4 | zmodcl 12015 | . . . . . . . 8 | |
5 | 4 | nn0red 10878 | . . . . . . 7 |
6 | 5 | adantl 466 | . . . . . 6 |
7 | 3, 6 | readdcld 9644 | . . . . 5 |
8 | 7 | ancoms 453 | . . . 4 |
9 | nnrp 11258 | . . . . 5 | |
10 | 9 | ad2antlr 726 | . . . 4 |
11 | elfzo2 11832 | . . . . . 6 | |
12 | eluz2 11116 | . . . . . . . 8 | |
13 | nnre 10568 | . . . . . . . . . . . . . 14 | |
14 | 13 | adantl 466 | . . . . . . . . . . . . 13 |
15 | 14 | adantl 466 | . . . . . . . . . . . 12 |
16 | 5 | adantl 466 | . . . . . . . . . . . 12 |
17 | zre 10893 | . . . . . . . . . . . . 13 | |
18 | 17 | adantr 465 | . . . . . . . . . . . 12 |
19 | 15, 16, 18 | lesubaddd 10174 | . . . . . . . . . . 11 |
20 | 19 | biimpd 207 | . . . . . . . . . 10 |
21 | 20 | impancom 440 | . . . . . . . . 9 |
22 | 21 | 3adant1 1014 | . . . . . . . 8 |
23 | 12, 22 | sylbi 195 | . . . . . . 7 |
24 | 23 | 3ad2ant1 1017 | . . . . . 6 |
25 | 11, 24 | sylbi 195 | . . . . 5 |
26 | 25 | impcom 430 | . . . 4 |
27 | eluzelz 11119 | . . . . . . . . 9 | |
28 | 17, 5 | anim12i 566 | . . . . . . . . . . . . . . 15 |
29 | 13, 13 | jca 532 | . . . . . . . . . . . . . . . . 17 |
30 | 29 | adantl 466 | . . . . . . . . . . . . . . . 16 |
31 | 30 | adantl 466 | . . . . . . . . . . . . . . 15 |
32 | 28, 31 | jca 532 | . . . . . . . . . . . . . 14 |
33 | 32 | adantr 465 | . . . . . . . . . . . . 13 |
34 | simpr 461 | . . . . . . . . . . . . . 14 | |
35 | zre 10893 | . . . . . . . . . . . . . . . . 17 | |
36 | modlt 12006 | . . . . . . . . . . . . . . . . 17 | |
37 | 35, 9, 36 | syl2an 477 | . . . . . . . . . . . . . . . 16 |
38 | 5, 14, 37 | ltled 9754 | . . . . . . . . . . . . . . 15 |
39 | 38 | ad2antlr 726 | . . . . . . . . . . . . . 14 |
40 | 34, 39 | jca 532 | . . . . . . . . . . . . 13 |
41 | ltleadd 10060 | . . . . . . . . . . . . 13 | |
42 | 33, 40, 41 | sylc 60 | . . . . . . . . . . . 12 |
43 | nncn 10569 | . . . . . . . . . . . . . . 15 | |
44 | 43 | 2timesd 10806 | . . . . . . . . . . . . . 14 |
45 | 44 | adantl 466 | . . . . . . . . . . . . 13 |
46 | 45 | ad2antlr 726 | . . . . . . . . . . . 12 |
47 | 42, 46 | breqtrrd 4478 | . . . . . . . . . . 11 |
48 | 47 | exp31 604 | . . . . . . . . . 10 |
49 | 48 | com23 78 | . . . . . . . . 9 |
50 | 27, 49 | syl 16 | . . . . . . . 8 |
51 | 50 | imp 429 | . . . . . . 7 |
52 | 51 | 3adant2 1015 | . . . . . 6 |
53 | 11, 52 | sylbi 195 | . . . . 5 |
54 | 53 | impcom 430 | . . . 4 |
55 | 2submod 12048 | . . . . 5 | |
56 | 55 | eqcomd 2465 | . . . 4 |
57 | 8, 10, 26, 54, 56 | syl22anc 1229 | . . 3 |
58 | 35 | adantr 465 | . . . . 5 |
59 | 58 | adantr 465 | . . . 4 |
60 | 2 | adantl 466 | . . . 4 |
61 | modadd2mod 12037 | . . . 4 | |
62 | 59, 60, 10, 61 | syl3anc 1228 | . . 3 |
63 | 57, 62 | eqtrd 2498 | . 2 |
64 | 63 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 cr 9512 caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 cn 10561 2 c2 10610 cz 10889 cuz 11110
crp 11249
cfzo 11824 cmo 11996 |
This theorem is referenced by: cshwidxmod 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 |
Copyright terms: Public domain | W3C validator |