![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modaddmulmod | Unicode version |
Description: The sum of a real number and the product of a second real number modulo a positive real number and an integer equals the sum of the real number and the product of the other real number and the integer modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018.) |
Ref | Expression |
---|---|
modaddmulmod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 9603 | . . . . . 6 | |
2 | 1 | 3ad2ant1 1017 | . . . . 5 |
3 | 2 | adantr 465 | . . . 4 |
4 | simpl2 1000 | . . . . . . 7 | |
5 | simpr 461 | . . . . . . 7 | |
6 | 4, 5 | modcld 12002 | . . . . . 6 |
7 | 6 | recnd 9643 | . . . . 5 |
8 | zcn 10894 | . . . . . . 7 | |
9 | 8 | 3ad2ant3 1019 | . . . . . 6 |
10 | 9 | adantr 465 | . . . . 5 |
11 | 7, 10 | mulcld 9637 | . . . 4 |
12 | 3, 11 | addcomd 9803 | . . 3 |
13 | 12 | oveq1d 6311 | . 2 |
14 | zre 10893 | . . . . . 6 | |
15 | 14 | 3ad2ant3 1019 | . . . . 5 |
16 | 15 | adantr 465 | . . . 4 |
17 | 6, 16 | remulcld 9645 | . . 3 |
18 | simpl 457 | . . . . . . 7 | |
19 | 14 | adantl 466 | . . . . . . 7 |
20 | 18, 19 | remulcld 9645 | . . . . . 6 |
21 | 20 | 3adant1 1014 | . . . . 5 |
22 | 21 | adantr 465 | . . . 4 |
23 | 22, 5 | modcld 12002 | . . 3 |
24 | simp1 996 | . . . 4 | |
25 | 24 | anim1i 568 | . . 3 |
26 | simpl3 1001 | . . . . 5 | |
27 | modmulmod 12052 | . . . . 5 | |
28 | 4, 26, 5, 27 | syl3anc 1228 | . . . 4 |
29 | remulcl 9598 | . . . . . . 7 | |
30 | 14, 29 | sylan2 474 | . . . . . 6 |
31 | 30 | 3adant1 1014 | . . . . 5 |
32 | modabs2 12030 | . . . . 5 | |
33 | 31, 32 | sylan 471 | . . . 4 |
34 | 28, 33 | eqtr4d 2501 | . . 3 |
35 | modadd1 12033 | . . 3 | |
36 | 17, 23, 25, 34, 35 | syl211anc 1234 | . 2 |
37 | 31 | adantr 465 | . . . 4 |
38 | 24 | adantr 465 | . . . 4 |
39 | modaddmod 12035 | . . . 4 | |
40 | 37, 38, 5, 39 | syl3anc 1228 | . . 3 |
41 | recn 9603 | . . . . . . . 8 | |
42 | mulcl 9597 | . . . . . . . 8 | |
43 | 41, 8, 42 | syl2an 477 | . . . . . . 7 |
44 | 43 | 3adant1 1014 | . . . . . 6 |
45 | 44, 2 | addcomd 9803 | . . . . 5 |
46 | 45 | adantr 465 | . . . 4 |
47 | 46 | oveq1d 6311 | . . 3 |
48 | 40, 47 | eqtrd 2498 | . 2 |
49 | 13, 36, 48 | 3eqtrd 2502 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
(class class class)co 6296 cc 9511 cr 9512 caddc 9516 cmul 9518 cz 10889 crp 11249
cmo 11996 |
This theorem is referenced by: modprm0 14330 modprmn0modprm0 14332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 |
Copyright terms: Public domain | W3C validator |