![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modfsummod | Unicode version |
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
modfsummod.n | |
modfsummod.1 | |
modfsummod.2 |
Ref | Expression |
---|---|
modfsummod |
N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modfsummod.2 | . 2 | |
2 | modfsummod.n | . 2 | |
3 | modfsummod.1 | . . 3 | |
4 | raleq 3054 | . . . . . 6 | |
5 | 4 | anbi1d 704 | . . . . 5 |
6 | sumeq1 13511 | . . . . . . 7 | |
7 | 6 | oveq1d 6311 | . . . . . 6 |
8 | sumeq1 13511 | . . . . . . 7 | |
9 | 8 | oveq1d 6311 | . . . . . 6 |
10 | 7, 9 | eqeq12d 2479 | . . . . 5 |
11 | 5, 10 | imbi12d 320 | . . . 4 |
12 | raleq 3054 | . . . . . 6 | |
13 | 12 | anbi1d 704 | . . . . 5 |
14 | sumeq1 13511 | . . . . . . 7 | |
15 | 14 | oveq1d 6311 | . . . . . 6 |
16 | sumeq1 13511 | . . . . . . 7 | |
17 | 16 | oveq1d 6311 | . . . . . 6 |
18 | 15, 17 | eqeq12d 2479 | . . . . 5 |
19 | 13, 18 | imbi12d 320 | . . . 4 |
20 | raleq 3054 | . . . . . 6 | |
21 | 20 | anbi1d 704 | . . . . 5 |
22 | sumeq1 13511 | . . . . . . 7 | |
23 | 22 | oveq1d 6311 | . . . . . 6 |
24 | sumeq1 13511 | . . . . . . 7 | |
25 | 24 | oveq1d 6311 | . . . . . 6 |
26 | 23, 25 | eqeq12d 2479 | . . . . 5 |
27 | 21, 26 | imbi12d 320 | . . . 4 |
28 | raleq 3054 | . . . . . 6 | |
29 | 28 | anbi1d 704 | . . . . 5 |
30 | sumeq1 13511 | . . . . . . 7 | |
31 | 30 | oveq1d 6311 | . . . . . 6 |
32 | sumeq1 13511 | . . . . . . 7 | |
33 | 32 | oveq1d 6311 | . . . . . 6 |
34 | 31, 33 | eqeq12d 2479 | . . . . 5 |
35 | 29, 34 | imbi12d 320 | . . . 4 |
36 | sum0 13543 | . . . . . . . 8 | |
37 | 36 | a1i 11 | . . . . . . 7 |
38 | 37 | oveq1d 6311 | . . . . . 6 |
39 | sum0 13543 | . . . . . . 7 | |
40 | 39 | oveq1i 6306 | . . . . . 6 |
41 | 38, 40 | syl6reqr 2517 | . . . . 5 |
42 | 41 | adantl 466 | . . . 4 |
43 | simpll 753 | . . . . . . . . . 10 | |
44 | simplrr 762 | . . . . . . . . . 10 | |
45 | ralun 3685 | . . . . . . . . . . . . 13 | |
46 | 45 | ex 434 | . . . . . . . . . . . 12 |
47 | 46 | ad2antrl 727 | . . . . . . . . . . 11 |
48 | 47 | imp 429 | . . . . . . . . . 10 |
49 | modfsummods 13607 | . . . . . . . . . 10 | |
50 | 43, 44, 48, 49 | syl3anc 1228 | . . . . . . . . 9 |
51 | 50 | ex 434 | . . . . . . . 8 |
52 | 51 | com23 78 | . . . . . . 7 |
53 | 52 | ex 434 | . . . . . 6 |
54 | 53 | a2d 26 | . . . . 5 |
55 | ralunb 3684 | . . . . . . . 8 | |
56 | 55 | anbi1i 695 | . . . . . . 7 |
57 | 56 | imbi1i 325 | . . . . . 6 |
58 | an32 798 | . . . . . . 7 | |
59 | 58 | imbi1i 325 | . . . . . 6 |
60 | impexp 446 | . . . . . 6 | |
61 | 57, 59, 60 | 3bitri 271 | . . . . 5 |
62 | 54, 61 | syl6ibr 227 | . . . 4 |
63 | 11, 19, 27, 35, 42, 62 | findcard2 7780 | . . 3 |
64 | 3, 63 | syl 16 | . 2 |
65 | 1, 2, 64 | mp2and 679 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
u. cun 3473 c0 3784 { csn 4029 (class class class)co 6296
cfn 7536 0 cc0 9513 cn 10561 cz 10889 cmo 11996 sum_ csu 13508 |
This theorem is referenced by: numclwwlk6 25113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |