![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modifeq2int | Unicode version |
Description: If a nonnegative integer is less than the double of a positive integer, the nonnegative integer modulo the positive integer equals the nonnegative integer or the nonnegative integer minus the positive integer. (Contributed by Alexander van der Vekens, 21-May-2018.) |
Ref | Expression |
---|---|
modifeq2int |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 10829 | . . . . . . . 8 | |
2 | nnrp 11258 | . . . . . . . 8 | |
3 | 1, 2 | anim12i 566 | . . . . . . 7 |
4 | 3 | 3adant3 1016 | . . . . . 6 |
5 | 4 | adantl 466 | . . . . 5 |
6 | nn0ge0 10846 | . . . . . . . 8 | |
7 | 6 | 3ad2ant1 1017 | . . . . . . 7 |
8 | 7 | anim1i 568 | . . . . . 6 |
9 | 8 | ancoms 453 | . . . . 5 |
10 | modid 12020 | . . . . 5 | |
11 | 5, 9, 10 | syl2anc 661 | . . . 4 |
12 | iftrue 3947 | . . . . . 6 | |
13 | 12 | eqcomd 2465 | . . . . 5 |
14 | 13 | adantr 465 | . . . 4 |
15 | 11, 14 | eqtrd 2498 | . . 3 |
16 | 15 | ex 434 | . 2 |
17 | 4 | adantr 465 | . . . . 5 |
18 | nnre 10568 | . . . . . . . 8 | |
19 | lenlt 9684 | . . . . . . . 8 | |
20 | 18, 1, 19 | syl2anr 478 | . . . . . . 7 |
21 | 20 | 3adant3 1016 | . . . . . 6 |
22 | 21 | biimpar 485 | . . . . 5 |
23 | simpl3 1001 | . . . . 5 | |
24 | 2submod 12048 | . . . . 5 | |
25 | 17, 22, 23, 24 | syl12anc 1226 | . . . 4 |
26 | iffalse 3950 | . . . . . 6 | |
27 | 26 | adantl 466 | . . . . 5 |
28 | 27 | eqcomd 2465 | . . . 4 |
29 | 25, 28 | eqtrd 2498 | . . 3 |
30 | 29 | expcom 435 | . 2 |
31 | 16, 30 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 if cif 3941
class class class wbr 4452 (class class class)co 6296
cr 9512 0 cc0 9513 cmul 9518 clt 9649 cle 9650 cmin 9828 cn 10561 2 c2 10610 cn0 10820
crp 11249
cmo 11996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 |
Copyright terms: Public domain | W3C validator |