![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modmul1 | Unicode version |
Description: Multiplication property of the modulo operation. Note that the multiplier must be an integer. (Contributed by NM, 12-Nov-2008.) |
Ref | Expression |
---|---|
modmul1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modval 11998 | . . . . . . . 8 | |
2 | modval 11998 | . . . . . . . 8 | |
3 | 1, 2 | eqeqan12d 2480 | . . . . . . 7 |
4 | 3 | anandirs 831 | . . . . . 6 |
5 | 4 | adantrl 715 | . . . . 5 |
6 | oveq1 6303 | . . . . 5 | |
7 | 5, 6 | syl6bi 228 | . . . 4 |
8 | rpcn 11257 | . . . . . . . . . . 11 | |
9 | 8 | ad2antll 728 | . . . . . . . . . 10 |
10 | zcn 10894 | . . . . . . . . . . 11 | |
11 | 10 | ad2antrl 727 | . . . . . . . . . 10 |
12 | rerpdivcl 11276 | . . . . . . . . . . . . 13 | |
13 | 12 | flcld 11935 | . . . . . . . . . . . 12 |
14 | 13 | zcnd 10995 | . . . . . . . . . . 11 |
15 | 14 | adantrl 715 | . . . . . . . . . 10 |
16 | 9, 11, 15 | mulassd 9640 | . . . . . . . . 9 |
17 | 9, 11, 15 | mul32d 9811 | . . . . . . . . 9 |
18 | 16, 17 | eqtr3d 2500 | . . . . . . . 8 |
19 | 18 | oveq2d 6312 | . . . . . . 7 |
20 | recn 9603 | . . . . . . . . 9 | |
21 | 20 | adantr 465 | . . . . . . . 8 |
22 | 8 | adantl 466 | . . . . . . . . . 10 |
23 | 22, 14 | mulcld 9637 | . . . . . . . . 9 |
24 | 23 | adantrl 715 | . . . . . . . 8 |
25 | 21, 24, 11 | subdird 10038 | . . . . . . 7 |
26 | 19, 25 | eqtr4d 2501 | . . . . . 6 |
27 | 26 | adantlr 714 | . . . . 5 |
28 | 8 | ad2antll 728 | . . . . . . . . . 10 |
29 | 10 | ad2antrl 727 | . . . . . . . . . 10 |
30 | rerpdivcl 11276 | . . . . . . . . . . . . 13 | |
31 | 30 | flcld 11935 | . . . . . . . . . . . 12 |
32 | 31 | zcnd 10995 | . . . . . . . . . . 11 |
33 | 32 | adantrl 715 | . . . . . . . . . 10 |
34 | 28, 29, 33 | mulassd 9640 | . . . . . . . . 9 |
35 | 28, 29, 33 | mul32d 9811 | . . . . . . . . 9 |
36 | 34, 35 | eqtr3d 2500 | . . . . . . . 8 |
37 | 36 | oveq2d 6312 | . . . . . . 7 |
38 | recn 9603 | . . . . . . . . 9 | |
39 | 38 | adantr 465 | . . . . . . . 8 |
40 | 8 | adantl 466 | . . . . . . . . . 10 |
41 | 40, 32 | mulcld 9637 | . . . . . . . . 9 |
42 | 41 | adantrl 715 | . . . . . . . 8 |
43 | 39, 42, 29 | subdird 10038 | . . . . . . 7 |
44 | 37, 43 | eqtr4d 2501 | . . . . . 6 |
45 | 44 | adantll 713 | . . . . 5 |
46 | 27, 45 | eqeq12d 2479 | . . . 4 |
47 | 7, 46 | sylibrd 234 | . . 3 |
48 | oveq1 6303 | . . . 4 | |
49 | zre 10893 | . . . . . . . . 9 | |
50 | remulcl 9598 | . . . . . . . . 9 | |
51 | 49, 50 | sylan2 474 | . . . . . . . 8 |
52 | 51 | adantrr 716 | . . . . . . 7 |
53 | simprr 757 | . . . . . . 7 | |
54 | simprl 756 | . . . . . . . 8 | |
55 | 13 | adantrl 715 | . . . . . . . 8 |
56 | 54, 55 | zmulcld 11000 | . . . . . . 7 |
57 | modcyc2 12032 | . . . . . . 7 | |
58 | 52, 53, 56, 57 | syl3anc 1228 | . . . . . 6 |
59 | 58 | adantlr 714 | . . . . 5 |
60 | remulcl 9598 | . . . . . . . . 9 | |
61 | 49, 60 | sylan2 474 | . . . . . . . 8 |
62 | 61 | adantrr 716 | . . . . . . 7 |
63 | simprr 757 | . . . . . . 7 | |
64 | simprl 756 | . . . . . . . 8 | |
65 | 31 | adantrl 715 | . . . . . . . 8 |
66 | 64, 65 | zmulcld 11000 | . . . . . . 7 |
67 | modcyc2 12032 | . . . . . . 7 | |
68 | 62, 63, 66, 67 | syl3anc 1228 | . . . . . 6 |
69 | 68 | adantll 713 | . . . . 5 |
70 | 59, 69 | eqeq12d 2479 | . . . 4 |
71 | 48, 70 | syl5ib 219 | . . 3 |
72 | 47, 71 | syld 44 | . 2 |
73 | 72 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 ` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 cmul 9518 cmin 9828 cdiv 10231 cz 10889 crp 11249
cfl 11927
cmo 11996 |
This theorem is referenced by: modmul12d 12041 modnegd 12042 modmulmod 12052 eulerthlem2 14312 fermltl 14314 odzdvds 14322 wilthlem2 23343 lgsdir2lem4 23601 lgsdirprm 23604 pellexlem6 30770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 |
Copyright terms: Public domain | W3C validator |