![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > modprmn0modprm0 | Unicode version |
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.) |
Ref | Expression |
---|---|
modprmn0modprm0 |
I
,N
P
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 999 | . . . 4 | |
2 | prmnn 14220 | . . . . . . . . 9 | |
3 | zmodfzo 12018 | . . . . . . . . 9 | |
4 | 2, 3 | sylan2 474 | . . . . . . . 8 |
5 | 4 | ancoms 453 | . . . . . . 7 |
6 | 5 | 3adant3 1016 | . . . . . 6 |
7 | fzo1fzo0n0 11864 | . . . . . . . 8 | |
8 | 7 | simplbi2com 627 | . . . . . . 7 |
9 | 8 | 3ad2ant3 1019 | . . . . . 6 |
10 | 6, 9 | mpd 15 | . . . . 5 |
11 | 10 | adantr 465 | . . . 4 |
12 | simpr 461 | . . . 4 | |
13 | nnnn0modprm0 14331 | . . . 4 | |
14 | 1, 11, 12, 13 | syl3anc 1228 | . . 3 |
15 | elfzoelz 11829 | . . . . . . . . . 10 | |
16 | 15 | zcnd 10995 | . . . . . . . . 9 |
17 | 2 | anim1i 568 | . . . . . . . . . . . . 13 |
18 | 17 | ancomd 451 | . . . . . . . . . . . 12 |
19 | zmodcl 12015 | . . . . . . . . . . . 12 | |
20 | nn0cn 10830 | . . . . . . . . . . . 12 | |
21 | 18, 19, 20 | 3syl 20 | . . . . . . . . . . 11 |
22 | 21 | 3adant3 1016 | . . . . . . . . . 10 |
23 | 22 | adantr 465 | . . . . . . . . 9 |
24 | mulcom 9599 | . . . . . . . . 9 | |
25 | 16, 23, 24 | syl2anr 478 | . . . . . . . 8 |
26 | 25 | oveq2d 6312 | . . . . . . 7 |
27 | 26 | oveq1d 6311 | . . . . . 6 |
28 | elfzoelz 11829 | . . . . . . . . . 10 | |
29 | 28 | zred 10994 | . . . . . . . . 9 |
30 | 29 | adantl 466 | . . . . . . . 8 |
31 | 30 | adantr 465 | . . . . . . 7 |
32 | zre 10893 | . . . . . . . . . 10 | |
33 | 32 | 3ad2ant2 1018 | . . . . . . . . 9 |
34 | 33 | adantr 465 | . . . . . . . 8 |
35 | 34 | adantr 465 | . . . . . . 7 |
36 | 15 | adantl 466 | . . . . . . 7 |
37 | 2 | nnrpd 11284 | . . . . . . . . . 10 |
38 | 37 | 3ad2ant1 1017 | . . . . . . . . 9 |
39 | 38 | adantr 465 | . . . . . . . 8 |
40 | 39 | adantr 465 | . . . . . . 7 |
41 | modaddmulmod 12053 | . . . . . . 7 | |
42 | 31, 35, 36, 40, 41 | syl31anc 1231 | . . . . . 6 |
43 | zcn 10894 | . . . . . . . . . . . . . 14 | |
44 | 43 | adantr 465 | . . . . . . . . . . . . 13 |
45 | 16 | adantl 466 | . . . . . . . . . . . . 13 |
46 | 44, 45 | mulcomd 9638 | . . . . . . . . . . . 12 |
47 | 46 | ex 434 | . . . . . . . . . . 11 |
48 | 47 | 3ad2ant2 1018 | . . . . . . . . . 10 |
49 | 48 | adantr 465 | . . . . . . . . 9 |
50 | 49 | imp 429 | . . . . . . . 8 |
51 | 50 | oveq2d 6312 | . . . . . . 7 |
52 | 51 | oveq1d 6311 | . . . . . 6 |
53 | 27, 42, 52 | 3eqtrrd 2503 | . . . . 5 |
54 | 53 | eqeq1d 2459 | . . . 4 |
55 | 54 | rexbidva 2965 | . . 3 |
56 | 14, 55 | mpbird 232 | . 2 |
57 | 56 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 E. wrex 2808 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cn 10561 cn0 10820
cz 10889 crp 11249
cfzo 11824 cmo 11996 cprime 14217 |
This theorem is referenced by: cshwsidrepsw 14578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-phi 14296 |
Copyright terms: Public domain | W3C validator |