Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopickOLD Unicode version

Theorem mopickOLD 2357
 Description: Obsolete proof of mopick 2356 as of 15-Sep-2019. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 29-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mopickOLD

Proof of Theorem mopickOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1707 . . . 4
21sb8e 2168 . . 3
3 sban 2140 . . . . 5
4 nfv 1707 . . . . . . . . . . 11
54mo3 2323 . . . . . . . . . 10
6 2sp 1866 . . . . . . . . . 10
75, 6sylbi 195 . . . . . . . . 9
87expd 436 . . . . . . . 8
9 sbequ2 1741 . . . . . . . 8
108, 9syl8 70 . . . . . . 7
1110com4t 85 . . . . . 6
1211imp 429 . . . . 5
133, 12sylbi 195 . . . 4
1413exlimiv 1722 . . 3
152, 14sylbi 195 . 2
1615impcom 430 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  A.wal 1393  E.wex 1612  [wsb 1739  E*wmo 2283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287
 Copyright terms: Public domain W3C validator