![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mosubopt | Unicode version |
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.) |
Ref | Expression |
---|---|
mosubopt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1897 | . . 3 | |
2 | nfe1 1840 | . . . 4 | |
3 | 2 | nfmo 2301 | . . 3 |
4 | nfa1 1897 | . . . . 5 | |
5 | nfe1 1840 | . . . . . . 7 | |
6 | 5 | nfex 1948 | . . . . . 6 |
7 | 6 | nfmo 2301 | . . . . 5 |
8 | copsexg 4737 | . . . . . . . 8 | |
9 | 8 | mobidv 2305 | . . . . . . 7 |
10 | 9 | biimpcd 224 | . . . . . 6 |
11 | 10 | sps 1865 | . . . . 5 |
12 | 4, 7, 11 | exlimd 1914 | . . . 4 |
13 | 12 | sps 1865 | . . 3 |
14 | 1, 3, 13 | exlimd 1914 | . 2 |
15 | simpl 457 | . . . . . 6 | |
16 | 15 | 2eximi 1657 | . . . . 5 |
17 | 16 | exlimiv 1722 | . . . 4 |
18 | 17 | con3i 135 | . . 3 |
19 | exmo 2309 | . . . 4 | |
20 | 19 | ori 375 | . . 3 |
21 | 18, 20 | syl 16 | . 2 |
22 | 14, 21 | pm2.61d1 159 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 E* wmo 2283 <. cop 4035 |
This theorem is referenced by: mosubop 4751 funoprabg 6401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |