![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mp3anl2 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
mp3anl2.1 | |
mp3anl2.2 |
Ref | Expression |
---|---|
mp3anl2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anl2.1 | . . 3 | |
2 | mp3anl2.2 | . . . 4 | |
3 | 2 | ex 434 | . . 3 |
4 | 1, 3 | mp3an2 1312 | . 2 |
5 | 4 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: mp3anr2 1322 ccat2s1fst 12643 1dvds 13998 bcs2 26099 nmopub2tALT 26828 nmfnleub2 26845 nmophmi 26950 nmopcoadji 27020 atordi 27303 mdsymlem5 27326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |