MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3anr1 Unicode version

Theorem mp3anr1 1321
Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.)
Hypotheses
Ref Expression
mp3anr1.1
mp3anr1.2
Assertion
Ref Expression
mp3anr1

Proof of Theorem mp3anr1
StepHypRef Expression
1 mp3anr1.1 . . 3
2 mp3anr1.2 . . . 4
32ancoms 453 . . 3
41, 3mp3anl1 1318 . 2
54ancoms 453 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973
This theorem is referenced by:  vc2  25448  vcsubdir  25449  vc0  25462  vcm  25464  vcnegneg  25467  vcnegsubdi2  25468  vcsub4  25469  nvaddsub4  25556  nvnncan  25558  nvpi  25569  nvge0  25577  ipval3  25619  ipidsq  25623  lnoadd  25673  lnosub  25674  dipsubdir  25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator