![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mp3anr1 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.) |
Ref | Expression |
---|---|
mp3anr1.1 | |
mp3anr1.2 |
Ref | Expression |
---|---|
mp3anr1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3anr1.1 | . . 3 | |
2 | mp3anr1.2 | . . . 4 | |
3 | 2 | ancoms 453 | . . 3 |
4 | 1, 3 | mp3anl1 1318 | . 2 |
5 | 4 | ancoms 453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: vc2 25448 vcsubdir 25449 vc0 25462 vcm 25464 vcnegneg 25467 vcnegsubdi2 25468 vcsub4 25469 nvaddsub4 25556 nvnncan 25558 nvpi 25569 nvge0 25577 ipval3 25619 ipidsq 25623 lnoadd 25673 lnosub 25674 dipsubdir 25763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |