![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpanl1 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanl1.1 | |
mpanl1.2 |
Ref | Expression |
---|---|
mpanl1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | . . 3 | |
2 | 1 | jctl 541 | . 2 |
3 | mpanl1.2 | . 2 | |
4 | 2, 3 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: mpanl12 682 frc 4850 oeoelem 7266 ercnv 7351 frfi 7785 fin23lem23 8727 divdiv23zi 10322 recp1lt1 10468 divgt0i 10479 divge0i 10480 ltreci 10481 lereci 10482 lt2msqi 10483 le2msqi 10484 msq11i 10485 ltdiv23i 10495 fnn0ind 10988 elfzp1b 11784 elfzm1b 11785 sqrt11i 13217 sqrtmuli 13218 sqrtmsq2i 13220 sqrtlei 13221 sqrtlti 13222 fsum 13542 fprod 13748 blometi 25718 spansnm0i 26568 lnopli 26887 lnfnli 26959 opsqrlem1 27059 opsqrlem6 27064 mdslmd3i 27251 atordi 27303 mdsymlem1 27322 gsummpt2co 27771 fdc 30238 prter3 30623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |