![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpanr1 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | |
mpanr1.2 |
Ref | Expression |
---|---|
mpanr1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 | |
2 | mpanr1.2 | . . 3 | |
3 | 2 | anassrs 648 | . 2 |
4 | 1, 3 | mpanl2 681 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: mpanr12 685 oacl 7204 omcl 7205 oaordi 7214 oawordri 7218 oaass 7229 oarec 7230 omordi 7234 omwordri 7240 odi 7247 omass 7248 oeoelem 7266 fimax2g 7786 noinfepOLD 8098 axcnre 9562 divdiv23zi 10322 recp1lt1 10468 divgt0i 10479 divge0i 10480 ltreci 10481 lereci 10482 lt2msqi 10483 le2msqi 10484 msq11i 10485 ltdiv23i 10495 ltdivp1i 10497 zmin 11207 ge0gtmnf 11402 hashprg 12460 sqrt11i 13217 sqrtmuli 13218 sqrtmsq2i 13220 sqrtlei 13221 sqrtlti 13222 cos01gt0 13926 0wlk 24547 0trl 24548 0pth 24572 0spth 24573 0crct 24626 0cycl 24627 0clwlk 24765 vc2 25448 vc0 25462 vcm 25464 vcnegneg 25467 nvnncan 25558 nvpi 25569 nvge0 25577 ipval3 25619 ipidsq 25623 sspmval 25646 opsqrlem1 27059 opsqrlem6 27064 hstle 27149 hstrbi 27185 atordi 27303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |