![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpanr2 | Unicode version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpanr2.1 | |
mpanr2.2 |
Ref | Expression |
---|---|
mpanr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr2.1 | . . 3 | |
2 | 1 | jctr 542 | . 2 |
3 | mpanr2.2 | . 2 | |
4 | 2, 3 | sylan2 474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: fvreseq1 5988 op1steq 6842 fpmg 7464 pmresg 7466 pw2f1o 7642 pm54.43 8402 dfac2 8532 ttukeylem6 8915 gruina 9217 muleqadd 10218 divdiv1 10280 addltmul 10799 elfzp1b 11784 elfzm1b 11785 expp1z 12214 expm1 12215 oddvdsnn0 16568 efgi0 16738 efgi1 16739 fiinbas 19453 opnneissb 19615 fclscf 20526 blssec 20938 iimulcl 21437 itg2lr 22137 blocnilem 25719 lnopmul 26886 opsqrlem6 27064 gsumle 27770 gsumvsca1 27773 gsumvsca2 27774 locfinreflem 27843 fvray 29791 fvline 29794 fneref 30168 fdc 30238 rmyeq0 30891 linepmap 35499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |