![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > mpbir3an | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
mpbir3an.1 | |
mpbir3an.2 | |
mpbir3an.3 | |
mpbir3an.4 |
Ref | Expression |
---|---|
mpbir3an |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 | |
2 | mpbir3an.2 | . . 3 | |
3 | mpbir3an.3 | . . 3 | |
4 | 1, 2, 3 | 3pm3.2i 1174 | . 2 |
5 | mpbir3an.4 | . 2 | |
6 | 4, 5 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ w3a 973 |
This theorem is referenced by: limon 6671 issmo 7038 xpider 7401 omina 9090 1eluzge0 11153 2eluzge0OLD 11155 2eluzge1 11156 0elunit 11667 1elunit 11668 4fvwrd4 11822 fzo0to42pr 11901 ccat2s1p2 12633 cats1fv 12824 wwlktovf 12894 sincos1sgn 13928 sincos2sgn 13929 divalglem7 14057 igz 14452 strlemor1 14724 strleun 14727 strle1 14728 letsr 15857 psgnunilem2 16520 xrge0subm 18459 cnsubmlem 18466 cnsubglem 18467 cnsubrglem 18468 cnmsubglem 18480 nn0srg 18486 rge0srg 18487 ust0 20722 cnngp 21287 cnfldtgp 21373 htpycc 21480 pco0 21514 pcocn 21517 pcohtpylem 21519 pcopt 21522 pcopt2 21523 pcoass 21524 pcorevlem 21526 sinhalfpilem 22856 sincos4thpi 22906 sincos6thpi 22908 argregt0 22995 argrege0 22996 asin1 23225 atanbnd 23257 atan1 23259 harmonicbnd3 23337 ppiublem1 23477 usgraex0elv 24396 usgraex1elv 24397 usgraex2elv 24398 usgraex3elv 24399 usgrcyclnl1 24640 usgrcyclnl2 24641 4cycl4v4e 24666 4cycl4dv 24667 4cycl4dv4e 24668 ex-opab 25153 isgrpoi 25200 issubgoi 25312 isvci 25475 isnvi 25506 adj1o 26813 bra11 27027 xrge0omnd 27701 reofld 27830 xrge0slmod 27834 unitssxrge0 27882 iistmd 27884 mhmhmeotmd 27909 xrge0tmdOLD 27927 rerrext 27990 cnrrext 27991 volmeas 28203 ddemeas 28208 fib1 28339 ballotlem2 28427 ballotth 28476 logi 29121 fdc 30238 riscer 30391 jm2.27dlem2 30952 arearect 31183 areaquad 31184 lhe4.4ex1a 31234 wallispilem4 31850 fourierdlem20 31909 fourierdlem62 31951 fourierdlem104 31993 fourierdlem111 32000 sqwvfoura 32011 sqwvfourb 32012 fouriersw 32014 usgra2pthlem1 32353 2zlidl 32740 2zrngALT 32754 elogb 33169 bj-pinftyccb 34624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |