Metamath Proof Explorer


Table of Contents - 20.16.8. Affine, Euclidean, and Cartesian geometry

A few basic theorems to start affine, Euclidean, and Cartesian geometry.

The first step is to define real vector spaces, then barycentric coordinates and convex hulls.

  1. Real vector spaces
    1. bj-fvimacnv0
    2. bj-isvec
    3. bj-fldssdrng
    4. bj-flddrng
    5. bj-rrdrg
    6. bj-isclm
    7. crrvec
    8. df-bj-rvec
    9. bj-isrvec
    10. bj-rvecmod
    11. bj-rvecssmod
    12. bj-rvecrr
    13. bj-isrvecd
    14. bj-rvecvec
    15. bj-isrvec2
    16. bj-rvecssvec
    17. bj-rveccmod
    18. bj-rvecsscmod
    19. bj-rvecsscvec
    20. bj-rveccvec
    21. bj-rvecssabl
    22. bj-rvecabl
  2. Complex numbers (supplements)
    1. bj-subcom
    2. bj-lineqi
  3. Barycentric coordinates
    1. bj-bary1lem
    2. bj-bary1lem1
    3. bj-bary1