Metamath Proof Explorer
Table of Contents - 20.16.8. Affine, Euclidean, and Cartesian geometry
A few basic theorems to start affine, Euclidean, and Cartesian geometry.
The first step is to define real vector spaces, then barycentric coordinates
and convex hulls.
- Real vector spaces
- bj-fvimacnv0
- bj-isvec
- bj-fldssdrng
- bj-flddrng
- bj-rrdrg
- bj-isclm
- crrvec
- df-bj-rvec
- bj-isrvec
- bj-rvecmod
- bj-rvecssmod
- bj-rvecrr
- bj-isrvecd
- bj-rvecvec
- bj-isrvec2
- bj-rvecssvec
- bj-rveccmod
- bj-rvecsscmod
- bj-rvecsscvec
- bj-rveccvec
- bj-rvecssabl
- bj-rvecabl
- Complex numbers (supplements)
- bj-subcom
- bj-lineqi
- Barycentric coordinates
- bj-bary1lem
- bj-bary1lem1
- bj-bary1