Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
Metamath Proof Explorer
Table of Contents - 21.45.19.6. Measurable functions
Proofs for most of the theorems in section 121 of [Fremlin1 ]. Real-valued
functions are considered, and measurability is defined with respect to an
arbitrary sigma-algebra. When the sigma-algebra on the domain is the
Lebesgue measure on the reals, then all real-valued measurable functions
in the sense of df-mbf are also sigma-measurable, but the definition in
this section considers as measurable functions, some that are not measurable
in the sense of df-mbf (see mbfpsssmf and smfmbfcex ).
csmblfn
df-smblfn
pimltmnf2f
pimltmnf2
preimagelt
preimalegt
pimconstlt0
pimconstlt1
pimltpnff
pimltpnf
pimgtpnf2f
pimgtpnf2
salpreimagelt
pimrecltpos
salpreimalegt
pimiooltgt
preimaicomnf
pimltpnf2f
pimltpnf2
pimgtmnf2
pimdecfgtioc
pimincfltioc
pimdecfgtioo
pimincfltioo
preimaioomnf
preimageiingt
preimaleiinlt
pimgtmnff
pimgtmnf
pimrecltneg
salpreimagtge
salpreimaltle
issmflem
issmf
salpreimalelt
salpreimagtlt
smfpreimalt
smff
smfdmss
issmff
issmfd
smfpreimaltf
issmfdf
sssmf
mbfresmf
cnfsmf
incsmflem
incsmf
smfsssmf
issmflelem
issmfle
smfpimltmpt
smfpimltxr
issmfdmpt
smfconst
sssmfmpt
cnfrrnsmf
smfid
bormflebmf
smfpreimale
issmfgtlem
issmfgt
issmfled
smfpimltxrmptf
smfpimltxrmpt
smfmbfcex
issmfgtd
smfpreimagt
smfaddlem1
smfaddlem2
smfadd
decsmflem
decsmf
smfpreimagtf
issmfgelem
issmfge
smflimlem1
smflimlem2
smflimlem3
smflimlem4
smflimlem5
smflimlem6
smflim
nsssmfmbflem
nsssmfmbf
smfpimgtxr
smfpimgtmpt
smfpreimage
mbfpsssmf
smfpimgtxrmptf
smfpimgtxrmpt
smfpimioompt
smfpimioo
smfresal
smfrec
smfres
smfmullem1
smfmullem2
smfmullem3
smfmullem4
smfmul
smfmulc1
smfdiv
smfpimbor1lem1
smfpimbor1lem2
smfpimbor1
smf2id
smfco
smfneg
smffmptf
smffmpt
smflim2
smfpimcclem
smfpimcc
issmfle2d
smflimmpt
smfsuplem1
smfsuplem2
smfsuplem3
smfsup
smfsupmpt
smfsupxr
smfinflem
smfinf
smfinfmpt
smflimsuplem1
smflimsuplem2
smflimsuplem3
smflimsuplem4
smflimsuplem5
smflimsuplem6
smflimsuplem7
smflimsuplem8
smflimsup
smflimsupmpt
smfliminflem
smfliminf
smfliminfmpt
adddmmbl
adddmmbl2
muldmmbl
muldmmbl2
smfdmmblpimne
smfdivdmmbl
smfpimne
smfpimne2
smfdivdmmbl2
fsupdm
fsupdm2
smfsupdmmbllem
smfsupdmmbl
finfdm
finfdm2
smfinfdmmbllem
smfinfdmmbl