Metamath Proof Explorer
Table of Contents - 2.6. ZF Set Theory - add the Axiom of Infinity
- Introduce the Axiom of Infinity
- ax-inf
- zfinf
- axinf2
- ax-inf2
- zfinf2
- Existence of omega (the set of natural numbers)
- omex
- axinf
- inf5
- omelon
- dfom3
- elom3
- dfom4
- dfom5
- oancom
- isfinite
- fict
- nnsdom
- omenps
- omensuc
- infdifsn
- infdiffi
- unbnn3
- noinfep
- Cantor normal form
- ccnf
- df-cnf
- cantnffval
- cantnfdm
- cantnfvalf
- cantnfs
- cantnfcl
- cantnfval
- cantnfval2
- cantnfsuc
- cantnfle
- cantnflt
- cantnflt2
- cantnff
- cantnf0
- cantnfrescl
- cantnfres
- cantnfp1lem1
- cantnfp1lem2
- cantnfp1lem3
- cantnfp1
- oemapso
- oemapval
- oemapvali
- cantnflem1a
- cantnflem1b
- cantnflem1c
- cantnflem1d
- cantnflem1
- cantnflem2
- cantnflem3
- cantnflem4
- cantnf
- oemapwe
- cantnffval2
- cantnff1o
- wemapwe
- oef1o
- cnfcomlem
- cnfcom
- cnfcom2lem
- cnfcom2
- cnfcom3lem
- cnfcom3
- cnfcom3clem
- cnfcom3c
- Transitive closure of a relation
- cttrcl
- df-ttrcl
- ttrcleq
- nfttrcld
- nfttrcl
- relttrcl
- brttrcl
- brttrcl2
- ssttrcl
- ttrcltr
- ttrclresv
- ttrclco
- cottrcl
- ttrclss
- dmttrcl
- rnttrcl
- ttrclexg
- dfttrcl2
- ttrclselem1
- ttrclselem2
- ttrclse
- Transitive closure under a relationship
- ctrpred
- df-trpred
- dftrpred2
- trpredeq1
- trpredeq2
- trpredeq3
- trpredeq1d
- trpredeq2d
- trpredeq3d
- eltrpred
- trpredlem1
- trpredpred
- trpredss
- trpredtr
- trpredmintr
- trpred0
- trpredelss
- dftrpred3g
- dftrpred4g
- trpredpo
- trpredrec
- trpredex
- Transitive closure
- trcl
- tz9.1
- tz9.1c
- epfrs
- zfregs
- zfregs2
- setind
- setind2
- ctc
- df-tc
- tcvalg
- tcid
- tctr
- tcmin
- tc2
- tcsni
- tcss
- tcel
- tcidm
- tc0
- tc00
- Well-Founded Induction
- frmin
- frminOLD
- frind
- frinsg
- frins
- frins2f
- frins2
- frins3
- Well-Founded Recursion
- frr3g
- frrlem15
- frrlem16
- frr1
- frr2
- frr3
- Rank
- cr1
- crnk
- df-r1
- df-rank
- r1funlim
- r1fnon
- r10
- r1sucg
- r1suc
- r1limg
- r1lim
- r1fin
- r1sdom
- r111
- r1tr
- r1tr2
- r1ordg
- r1ord3g
- r1ord
- r1ord2
- r1ord3
- r1sssuc
- r1pwss
- r1sscl
- r1val1
- tz9.12lem1
- tz9.12lem2
- tz9.12lem3
- tz9.12
- tz9.13
- tz9.13g
- rankwflemb
- rankf
- rankon
- r1elwf
- rankvalb
- rankr1ai
- rankvaln
- rankidb
- rankdmr1
- rankr1ag
- rankr1bg
- r1rankidb
- r1elssi
- r1elss
- pwwf
- sswf
- snwf
- unwf
- prwf
- opwf
- unir1
- jech9.3
- rankwflem
- rankval
- rankvalg
- rankval2
- uniwf
- rankr1clem
- rankr1c
- rankidn
- rankpwi
- rankelb
- wfelirr
- rankval3b
- ranksnb
- rankonidlem
- rankonid
- onwf
- onssr1
- rankr1g
- rankid
- rankr1
- ssrankr1
- rankr1a
- r1val2
- r1val3
- rankel
- rankval3
- bndrank
- unbndrank
- rankpw
- ranklim
- r1pw
- r1pwALT
- r1pwcl
- rankssb
- rankss
- rankunb
- rankprb
- rankopb
- rankuni2b
- ranksn
- rankuni2
- rankun
- rankpr
- rankop
- r1rankid
- rankeq0b
- rankeq0
- rankr1id
- rankuni
- rankr1b
- ranksuc
- rankuniss
- rankval4
- rankbnd
- rankbnd2
- rankc1
- rankc2
- rankelun
- rankelpr
- rankelop
- rankxpl
- rankxpu
- rankfu
- rankmapu
- rankxplim
- rankxplim2
- rankxplim3
- rankxpsuc
- tcwf
- tcrank
- Scott's trick; collection principle; Hilbert's epsilon
- scottex
- scott0
- scottexs
- scott0s
- cplem1
- cplem2
- cp
- bnd
- bnd2
- kardex
- karden
- htalem
- hta
- Disjoint union
- cdju
- cinl
- cinr
- df-dju
- df-inl
- df-inr
- djueq12
- djueq1
- djueq2
- nfdju
- djuex
- djuexb
- djulcl
- djurcl
- djulf1o
- djurf1o
- inlresf
- inlresf1
- inrresf
- inrresf1
- djuin
- djur
- djuss
- djuunxp
- djuexALT
- eldju1st
- eldju2ndl
- eldju2ndr
- djuun
- 1stinl
- 2ndinl
- 1stinr
- 2ndinr
- updjudhf
- updjudhcoinlf
- updjudhcoinrg
- updjud
- Cardinal numbers
- ccrd
- cale
- ccf
- wacn
- df-card
- df-aleph
- df-cf
- df-acn
- cardf2
- cardon
- isnum2
- isnumi
- ennum
- finnum
- onenon
- tskwe
- xpnum
- cardval3
- cardid2
- isnum3
- oncardval
- oncardid
- cardonle
- card0
- cardidm
- oncard
- ficardom
- ficardid
- cardnn
- cardnueq0
- cardne
- carden2a
- carden2b
- card1
- cardsn
- carddomi2
- sdomsdomcardi
- cardlim
- cardsdomelir
- cardsdomel
- iscard
- iscard2
- carddom2
- harcard
- cardprclem
- cardprc
- carduni
- cardiun
- cardennn
- cardsucinf
- cardsucnn
- cardom
- carden2
- cardsdom2
- domtri2
- nnsdomel
- cardval2
- isinffi
- fidomtri
- fidomtri2
- harsdom
- onsdom
- harval2
- harsucnn
- cardmin2
- pm54.43lem
- pm54.43
- pr2nelem
- pr2ne
- prdom2
- en2eqpr
- en2eleq
- en2other2
- dif1card
- leweon
- r0weon
- infxpenlem
- infxpen
- xpomen
- xpct
- infxpidm2
- infxpenc
- infxpenc2lem1
- infxpenc2lem2
- infxpenc2lem3
- infxpenc2
- iunmapdisj
- fseqenlem1
- fseqenlem2
- fseqdom
- fseqen
- infpwfidom
- dfac8alem
- dfac8a
- dfac8b
- dfac8clem
- dfac8c
- ac10ct
- ween
- ac5num
- ondomen
- numdom
- ssnum
- onssnum
- indcardi
- acnrcl
- acneq
- isacn
- acni
- acni2
- acni3
- acnlem
- numacn
- finacn
- acndom
- acnnum
- acnen
- acndom2
- acnen2
- fodomacn
- fodomnum
- fonum
- numwdom
- fodomfi2
- wdomfil
- infpwfien
- inffien
- wdomnumr
- alephfnon
- aleph0
- alephlim
- alephsuc
- alephon
- alephcard
- alephnbtwn
- alephnbtwn2
- alephordilem1
- alephordi
- alephord
- alephord2
- alephord2i
- alephord3
- alephsucdom
- alephsuc2
- alephdom
- alephgeom
- alephislim
- aleph11
- alephf1
- alephsdom
- alephdom2
- alephle
- cardaleph
- cardalephex
- infenaleph
- isinfcard
- iscard3
- cardnum
- alephinit
- carduniima
- cardinfima
- alephiso
- alephprc
- alephsson
- unialeph
- alephsmo
- alephf1ALT
- alephfplem1
- alephfplem2
- alephfplem3
- alephfplem4
- alephfp
- alephfp2
- alephval3
- alephsucpw2
- mappwen
- finnisoeu
- iunfictbso
- Axiom of Choice equivalents
- wac
- df-ac
- aceq1
- aceq0
- aceq2
- aceq3lem
- dfac3
- dfac4
- dfac5lem1
- dfac5lem2
- dfac5lem3
- dfac5lem4
- dfac5lem5
- dfac5
- dfac2a
- dfac2b
- dfac2
- dfac7
- dfac0
- dfac1
- dfac8
- dfac9
- dfac10
- dfac10c
- dfac10b
- acacni
- dfacacn
- dfac13
- dfac12lem1
- dfac12lem2
- dfac12lem3
- dfac12r
- dfac12k
- dfac12a
- dfac12
- kmlem1
- kmlem2
- kmlem3
- kmlem4
- kmlem5
- kmlem6
- kmlem7
- kmlem8
- kmlem9
- kmlem10
- kmlem11
- kmlem12
- kmlem13
- kmlem14
- kmlem15
- kmlem16
- dfackm
- Cardinal number arithmetic
- undjudom
- endjudisj
- djuen
- djuenun
- dju1en
- dju1dif
- dju1p1e2
- dju1p1e2ALT
- dju0en
- xp2dju
- djucomen
- djuassen
- xpdjuen
- mapdjuen
- pwdjuen
- djudom1
- djudom2
- djudoml
- djuxpdom
- djufi
- cdainflem
- djuinf
- infdju1
- pwdju1
- pwdjuidm
- djulepw
- onadju
- cardadju
- djunum
- unnum
- nnadju
- nnadjuALT
- ficardadju
- ficardun
- ficardunOLD
- ficardun2
- ficardun2OLD
- pwsdompw
- unctb
- infdjuabs
- infunabs
- infdju
- infdif
- infdif2
- infxpdom
- infxpabs
- infunsdom1
- infunsdom
- infxp
- pwdjudom
- infpss
- infmap2
- The Ackermann bijection
- ackbij2lem1
- ackbij1lem1
- ackbij1lem2
- ackbij1lem3
- ackbij1lem4
- ackbij1lem5
- ackbij1lem6
- ackbij1lem7
- ackbij1lem8
- ackbij1lem9
- ackbij1lem10
- ackbij1lem11
- ackbij1lem12
- ackbij1lem13
- ackbij1lem14
- ackbij1lem15
- ackbij1lem16
- ackbij1lem17
- ackbij1lem18
- ackbij1
- ackbij1b
- ackbij2lem2
- ackbij2lem3
- ackbij2lem4
- ackbij2
- r1om
- fictb
- Cofinality (without Axiom of Choice)
- cflem
- cfval
- cff
- cfub
- cflm
- cf0
- cardcf
- cflecard
- cfle
- cfon
- cfeq0
- cfsuc
- cff1
- cfflb
- cfval2
- coflim
- cflim3
- cflim2
- cfom
- cfss
- cfslb
- cfslbn
- cfslb2n
- cofsmo
- cfsmolem
- cfsmo
- cfcoflem
- coftr
- cfcof
- cfidm
- alephsing
- Eight inequivalent definitions of finite set
- sornom
- cfin1a
- cfin2
- cfin4
- cfin3
- cfin5
- cfin6
- cfin7
- df-fin1a
- df-fin2
- df-fin4
- df-fin3
- df-fin5
- df-fin6
- df-fin7
- isfin1a
- fin1ai
- isfin2
- fin2i
- isfin3
- isfin4
- fin4i
- isfin5
- isfin6
- isfin7
- sdom2en01
- infpssrlem1
- infpssrlem2
- infpssrlem3
- infpssrlem4
- infpssrlem5
- infpssr
- fin4en1
- ssfin4
- domfin4
- ominf4
- infpssALT
- isfin4-2
- isfin4p1
- fin23lem7
- fin23lem11
- fin2i2
- isfin2-2
- ssfin2
- enfin2i
- fin23lem24
- fincssdom
- fin23lem25
- fin23lem26
- fin23lem23
- fin23lem22
- fin23lem27
- isfin3ds
- ssfin3ds
- fin23lem12
- fin23lem13
- fin23lem14
- fin23lem15
- fin23lem16
- fin23lem19
- fin23lem20
- fin23lem17
- fin23lem21
- fin23lem28
- fin23lem29
- fin23lem30
- fin23lem31
- fin23lem32
- fin23lem33
- fin23lem34
- fin23lem35
- fin23lem36
- fin23lem38
- fin23lem39
- fin23lem40
- fin23lem41
- isf32lem1
- isf32lem2
- isf32lem3
- isf32lem4
- isf32lem5
- isf32lem6
- isf32lem7
- isf32lem8
- isf32lem9
- isf32lem10
- isf32lem11
- isf32lem12
- isfin32i
- isf33lem
- isfin3-2
- isfin3-3
- fin33i
- compsscnvlem
- compsscnv
- isf34lem1
- isf34lem2
- compssiso
- isf34lem3
- compss
- isf34lem4
- isf34lem5
- isf34lem7
- isf34lem6
- fin34i
- isfin3-4
- fin11a
- enfin1ai
- isfin1-2
- isfin1-3
- isfin1-4
- dffin1-5
- fin23
- fin34
- isfin5-2
- fin45
- fin56
- fin17
- fin67
- isfin7-2
- fin71num
- dffin7-2
- dfacfin7
- fin1a2lem1
- fin1a2lem2
- fin1a2lem3
- fin1a2lem4
- fin1a2lem5
- fin1a2lem6
- fin1a2lem7
- fin1a2lem8
- fin1a2lem9
- fin1a2lem10
- fin1a2lem11
- fin1a2lem12
- fin1a2lem13
- fin12
- fin1a2s
- fin1a2
- Hereditarily size-limited sets without Choice
- itunifval
- itunifn
- ituni0
- itunisuc
- itunitc1
- itunitc
- ituniiun
- hsmexlem7
- hsmexlem8
- hsmexlem9
- hsmexlem1
- hsmexlem2
- hsmexlem3
- hsmexlem4
- hsmexlem5
- hsmexlem6
- hsmex
- hsmex2
- hsmex3