Metamath Proof Explorer
Table of Contents - 5.3. Real and complex numbers - basic operations
- Addition
- add12
- add32
- add32r
- add4
- add42
- add12i
- add32i
- add4i
- add42i
- add12d
- add32d
- add4d
- add42d
- Subtraction
- cmin
- cneg
- df-sub
- df-neg
- 0cnALT
- 0cnALT2
- negeu
- subval
- negeq
- negeqi
- negeqd
- nfnegd
- nfneg
- csbnegg
- negex
- subcl
- negcl
- negicn
- subf
- subadd
- subadd2
- subsub23
- pncan
- pncan2
- pncan3
- npcan
- addsubass
- addsub
- subadd23
- addsub12
- 2addsub
- addsubeq4
- pncan3oi
- mvrraddi
- mvlladdi
- subid
- subid1
- npncan
- nppcan
- nnpcan
- nppcan3
- subcan2
- subeq0
- npncan2
- subsub2
- nncan
- subsub
- nppcan2
- subsub3
- subsub4
- sub32
- nnncan
- nnncan1
- nnncan2
- npncan3
- pnpcan
- pnpcan2
- pnncan
- ppncan
- addsub4
- subadd4
- sub4
- neg0
- negid
- negsub
- subneg
- negneg
- neg11
- negcon1
- negcon2
- negeq0
- subcan
- negsubdi
- negdi
- negdi2
- negsubdi2
- neg2sub
- renegcli
- resubcli
- renegcl
- resubcl
- negreb
- peano2cnm
- peano2rem
- negcli
- negidi
- negnegi
- subidi
- subid1i
- negne0bi
- negrebi
- negne0i
- subcli
- pncan3i
- negsubi
- subnegi
- subeq0i
- neg11i
- negcon1i
- negcon2i
- negdii
- negsubdii
- negsubdi2i
- subaddi
- subadd2i
- subaddrii
- subsub23i
- addsubassi
- addsubi
- subcani
- subcan2i
- pnncani
- addsub4i
- 0reALT
- negcld
- subidd
- subid1d
- negidd
- negnegd
- negeq0d
- negne0bd
- negcon1d
- negcon1ad
- neg11ad
- negned
- negne0d
- negrebd
- subcld
- pncand
- pncan2d
- pncan3d
- npcand
- nncand
- negsubd
- subnegd
- subeq0d
- subne0d
- subeq0ad
- subne0ad
- neg11d
- negdid
- negdi2d
- negsubdid
- negsubdi2d
- neg2subd
- subaddd
- subadd2d
- addsubassd
- addsubd
- subadd23d
- addsub12d
- npncand
- nppcand
- nppcan2d
- nppcan3d
- subsubd
- subsub2d
- subsub3d
- subsub4d
- sub32d
- nnncand
- nnncan1d
- nnncan2d
- npncan3d
- pnpcand
- pnpcan2d
- pnncand
- ppncand
- subcand
- subcan2d
- subcanad
- subneintrd
- subcan2ad
- subneintr2d
- addsub4d
- subadd4d
- sub4d
- 2addsubd
- addsubeq4d
- subeqxfrd
- mvlraddd
- mvlladdd
- mvrraddd
- mvrladdd
- assraddsubd
- subaddeqd
- addlsub
- addrsub
- subexsub
- addid0
- addn0nid
- pnpncand
- subeqrev
- addeq0
- pncan1
- npcan1
- subeq0bd
- renegcld
- resubcld
- negn0
- negf1o
- Multiplication
- kcnktkm1cn
- muladd
- subdi
- subdir
- ine0
- mulneg1
- mulneg2
- mulneg12
- mul2neg
- submul2
- mulm1
- addneg1mul
- mulsub
- mulsub2
- mulm1i
- mulneg1i
- mulneg2i
- mul2negi
- subdii
- subdiri
- muladdi
- mulm1d
- mulneg1d
- mulneg2d
- mul2negd
- subdid
- subdird
- muladdd
- mulsubd
- muls1d
- mulsubfacd
- addmulsub
- subaddmulsub
- mulsubaddmulsub
- Ordering on reals (cont.)
- gt0ne0
- lt0ne0
- ltadd1
- leadd1
- leadd2
- ltsubadd
- ltsubadd2
- lesubadd
- lesubadd2
- ltaddsub
- ltaddsub2
- leaddsub
- leaddsub2
- suble
- lesub
- ltsub23
- ltsub13
- le2add
- ltleadd
- leltadd
- lt2add
- addgt0
- addgegt0
- addgtge0
- addge0
- ltaddpos
- ltaddpos2
- ltsubpos
- posdif
- lesub1
- lesub2
- ltsub1
- ltsub2
- lt2sub
- le2sub
- ltneg
- ltnegcon1
- ltnegcon2
- leneg
- lenegcon1
- lenegcon2
- lt0neg1
- lt0neg2
- le0neg1
- le0neg2
- addge01
- addge02
- add20
- subge0
- suble0
- leaddle0
- subge02
- lesub0
- mulge0
- mullt0
- msqgt0
- msqge0
- 0lt1
- 0le1
- relin01
- ltordlem
- ltord1
- leord1
- eqord1
- ltord2
- leord2
- eqord2
- wloglei
- wlogle
- leidi
- gt0ne0i
- gt0ne0ii
- msqgt0i
- msqge0i
- addgt0i
- addge0i
- addgegt0i
- addgt0ii
- add20i
- ltnegi
- lenegi
- ltnegcon2i
- mulge0i
- lesub0i
- ltaddposi
- posdifi
- ltnegcon1i
- lenegcon1i
- subge0i
- ltadd1i
- leadd1i
- leadd2i
- ltsubaddi
- lesubaddi
- ltsubadd2i
- lesubadd2i
- ltaddsubi
- lt2addi
- le2addi
- gt0ne0d
- lt0ne0d
- leidd
- msqgt0d
- msqge0d
- lt0neg1d
- lt0neg2d
- le0neg1d
- le0neg2d
- addgegt0d
- addgtge0d
- addgt0d
- addge0d
- mulge0d
- ltnegd
- lenegd
- ltnegcon1d
- ltnegcon2d
- lenegcon1d
- lenegcon2d
- ltaddposd
- ltaddpos2d
- ltsubposd
- posdifd
- addge01d
- addge02d
- subge0d
- suble0d
- subge02d
- ltadd1d
- leadd1d
- leadd2d
- ltsubaddd
- lesubaddd
- ltsubadd2d
- lesubadd2d
- ltaddsubd
- ltaddsub2d
- leaddsub2d
- subled
- lesubd
- ltsub23d
- ltsub13d
- lesub1d
- lesub2d
- ltsub1d
- ltsub2d
- ltadd1dd
- ltsub1dd
- ltsub2dd
- leadd1dd
- leadd2dd
- lesub1dd
- lesub2dd
- lesub3d
- le2addd
- le2subd
- ltleaddd
- leltaddd
- lt2addd
- lt2subd
- possumd
- sublt0d
- ltaddsublt
- 1le1
- Reciprocals
- ixi
- recextlem1
- recextlem2
- recex
- mulcand
- mulcan2d
- mulcanad
- mulcan2ad
- mulcan
- mulcan2
- mulcani
- mul0or
- mulne0b
- mulne0
- mulne0i
- muleqadd
- receu
- mulnzcnopr
- msq0i
- mul0ori
- msq0d
- mul0ord
- mulne0bd
- mulne0d
- mulcan1g
- mulcan2g
- mulne0bad
- mulne0bbd
- Division
- cdiv
- df-div
- 1div0
- divval
- divmul
- divmul2
- divmul3
- divcl
- reccl
- divcan2
- divcan1
- diveq0
- divne0b
- divne0
- recne0
- recid
- recid2
- divrec
- divrec2
- divass
- div23
- div32
- div13
- div12
- divmulass
- divmulasscom
- divdir
- divcan3
- divcan4
- div11
- divid
- div0
- div1
- 1div1e1
- diveq1
- divneg
- muldivdir
- divsubdir
- subdivcomb1
- subdivcomb2
- recrec
- rec11
- rec11r
- divmuldiv
- divdivdiv
- divcan5
- divmul13
- divmul24
- divmuleq
- recdiv
- divcan6
- divdiv32
- divcan7
- dmdcan
- divdiv1
- divdiv2
- recdiv2
- ddcan
- divadddiv
- divsubdiv
- conjmul
- rereccl
- redivcl
- eqneg
- eqnegd
- eqnegad
- div2neg
- divneg2
- recclzi
- recne0zi
- recidzi
- div1i
- eqnegi
- reccli
- recidi
- recreci
- dividi
- div0i
- divclzi
- divcan1zi
- divcan2zi
- divreczi
- divcan3zi
- divcan4zi
- rec11i
- divcli
- divcan2i
- divcan1i
- divreci
- divcan3i
- divcan4i
- divne0i
- rec11ii
- divasszi
- divmulzi
- divdirzi
- divdiv23zi
- divmuli
- divdiv32i
- divassi
- divdiri
- div23i
- div11i
- divmuldivi
- divmul13i
- divadddivi
- divdivdivi
- rerecclzi
- rereccli
- redivclzi
- redivcli
- div1d
- reccld
- recne0d
- recidd
- recid2d
- recrecd
- dividd
- div0d
- divcld
- divcan1d
- divcan2d
- divrecd
- divrec2d
- divcan3d
- divcan4d
- diveq0d
- diveq1d
- diveq1ad
- diveq0ad
- divne1d
- divne0bd
- divnegd
- divneg2d
- div2negd
- divne0d
- recdivd
- recdiv2d
- divcan6d
- ddcand
- rec11d
- divmuld
- div32d
- div13d
- divdiv32d
- divcan5d
- divcan5rd
- divcan7d
- dmdcand
- dmdcan2d
- divdiv1d
- divdiv2d
- divmul2d
- divmul3d
- divassd
- div12d
- div23d
- divdird
- divsubdird
- div11d
- divmuldivd
- divmul13d
- divmul24d
- divadddivd
- divsubdivd
- divmuleqd
- divdivdivd
- diveq1bd
- div2sub
- div2subd
- rereccld
- redivcld
- subrec
- subreci
- subrecd
- mvllmuld
- mvllmuli
- ldiv
- rdiv
- mdiv
- lineq
- Ordering on reals (cont.)
- elimgt0
- elimge0
- ltp1
- lep1
- ltm1
- lem1
- letrp1
- p1le
- recgt0
- prodgt0
- prodgt02
- ltmul1a
- ltmul1
- ltmul2
- lemul1
- lemul2
- lemul1a
- lemul2a
- ltmul12a
- lemul12b
- lemul12a
- mulgt1
- ltmulgt11
- ltmulgt12
- lemulge11
- lemulge12
- ltdiv1
- lediv1
- gt0div
- ge0div
- divgt0
- divge0
- mulge0b
- mulle0b
- mulsuble0b
- ltmuldiv
- ltmuldiv2
- ltdivmul
- ledivmul
- ltdivmul2
- lt2mul2div
- ledivmul2
- lemuldiv
- lemuldiv2
- ltrec
- lerec
- lt2msq1
- lt2msq
- ltdiv2
- ltrec1
- lerec2
- ledivdiv
- lediv2
- ltdiv23
- lediv23
- lediv12a
- lediv2a
- reclt1
- recgt1
- recgt1i
- recp1lt1
- recreclt
- le2msq
- msq11
- ledivp1
- squeeze0
- ltp1i
- recgt0i
- recgt0ii
- prodgt0i
- divgt0i
- divge0i
- ltreci
- lereci
- lt2msqi
- le2msqi
- msq11i
- divgt0i2i
- ltrecii
- divgt0ii
- ltmul1i
- ltdiv1i
- ltmuldivi
- ltmul2i
- lemul1i
- lemul2i
- ltdiv23i
- ledivp1i
- ltdivp1i
- ltdiv23ii
- ltmul1ii
- ltdiv1ii
- ltp1d
- lep1d
- ltm1d
- lem1d
- recgt0d
- divgt0d
- mulgt1d
- lemulge11d
- lemulge12d
- lemul1ad
- lemul2ad
- ltmul12ad
- lemul12ad
- lemul12bd
- Completeness Axiom and Suprema
- fimaxre
- fimaxre2
- fimaxre3
- fiminre
- fiminre2
- negfi
- lbreu
- lbcl
- lble
- lbinf
- lbinfcl
- lbinfle
- sup2
- sup3
- infm3lem
- infm3
- suprcl
- suprub
- suprubd
- suprcld
- suprlub
- suprnub
- suprleub
- supaddc
- supadd
- supmul1
- supmullem1
- supmullem2
- supmul
- sup3ii
- suprclii
- suprubii
- suprlubii
- suprnubii
- suprleubii
- riotaneg
- negiso
- dfinfre
- infrecl
- infrenegsup
- infregelb
- infrelb
- infrefilb
- supfirege
- Imaginary and complex number properties
- inelr
- rimul
- cru
- crne0
- creur
- creui
- cju
- Function operation analogue theorems
- ofsubeq0
- ofnegsub
- ofsubge0