Metamath Proof Explorer


Table of Contents - 5.3. Real and complex numbers - basic operations

  1. Addition
    1. add12
    2. add32
    3. add32r
    4. add4
    5. add42
    6. add12i
    7. add32i
    8. add4i
    9. add42i
    10. add12d
    11. add32d
    12. add4d
    13. add42d
  2. Subtraction
    1. cmin
    2. cneg
    3. df-sub
    4. df-neg
    5. 0cnALT
    6. 0cnALT2
    7. negeu
    8. subval
    9. negeq
    10. negeqi
    11. negeqd
    12. nfnegd
    13. nfneg
    14. csbnegg
    15. negex
    16. subcl
    17. negcl
    18. negicn
    19. subf
    20. subadd
    21. subadd2
    22. subsub23
    23. pncan
    24. pncan2
    25. pncan3
    26. npcan
    27. addsubass
    28. addsub
    29. subadd23
    30. addsub12
    31. 2addsub
    32. addsubeq4
    33. pncan3oi
    34. mvrraddi
    35. mvrladdi
    36. mvlladdi
    37. subid
    38. subid1
    39. npncan
    40. nppcan
    41. nnpcan
    42. nppcan3
    43. subcan2
    44. subeq0
    45. npncan2
    46. subsub2
    47. nncan
    48. subsub
    49. nppcan2
    50. subsub3
    51. subsub4
    52. sub32
    53. nnncan
    54. nnncan1
    55. nnncan2
    56. npncan3
    57. pnpcan
    58. pnpcan2
    59. pnncan
    60. ppncan
    61. addsub4
    62. subadd4
    63. sub4
    64. neg0
    65. negid
    66. negsub
    67. subneg
    68. negneg
    69. neg11
    70. negcon1
    71. negcon2
    72. negeq0
    73. subcan
    74. negsubdi
    75. negdi
    76. negdi2
    77. negsubdi2
    78. neg2sub
    79. renegcli
    80. resubcli
    81. renegcl
    82. resubcl
    83. negreb
    84. peano2cnm
    85. peano2rem
    86. negcli
    87. negidi
    88. negnegi
    89. subidi
    90. subid1i
    91. negne0bi
    92. negrebi
    93. negne0i
    94. subcli
    95. pncan3i
    96. negsubi
    97. subnegi
    98. subeq0i
    99. neg11i
    100. negcon1i
    101. negcon2i
    102. negdii
    103. negsubdii
    104. negsubdi2i
    105. subaddi
    106. subadd2i
    107. subaddrii
    108. subsub23i
    109. addsubassi
    110. addsubi
    111. subcani
    112. subcan2i
    113. pnncani
    114. addsub4i
    115. 0reALT
    116. negcld
    117. subidd
    118. subid1d
    119. negidd
    120. negnegd
    121. negeq0d
    122. negne0bd
    123. negcon1d
    124. negcon1ad
    125. neg11ad
    126. negned
    127. negne0d
    128. negrebd
    129. subcld
    130. pncand
    131. pncan2d
    132. pncan3d
    133. npcand
    134. nncand
    135. negsubd
    136. subnegd
    137. subeq0d
    138. subne0d
    139. subeq0ad
    140. subne0ad
    141. neg11d
    142. negdid
    143. negdi2d
    144. negsubdid
    145. negsubdi2d
    146. neg2subd
    147. subaddd
    148. subadd2d
    149. addsubassd
    150. addsubd
    151. subadd23d
    152. addsub12d
    153. npncand
    154. nppcand
    155. nppcan2d
    156. nppcan3d
    157. subsubd
    158. subsub2d
    159. subsub3d
    160. subsub4d
    161. sub32d
    162. nnncand
    163. nnncan1d
    164. nnncan2d
    165. npncan3d
    166. pnpcand
    167. pnpcan2d
    168. pnncand
    169. ppncand
    170. subcand
    171. subcan2d
    172. subcanad
    173. subneintrd
    174. subcan2ad
    175. subneintr2d
    176. addsub4d
    177. subadd4d
    178. sub4d
    179. 2addsubd
    180. addsubeq4d
    181. subeqxfrd
    182. mvlraddd
    183. mvlladdd
    184. mvrraddd
    185. mvrladdd
    186. assraddsubd
    187. subaddeqd
    188. addlsub
    189. addrsub
    190. subexsub
    191. addid0
    192. addn0nid
    193. pnpncand
    194. subeqrev
    195. addeq0
    196. pncan1
    197. npcan1
    198. subeq0bd
    199. renegcld
    200. resubcld
    201. negn0
    202. negf1o
  3. Multiplication
    1. kcnktkm1cn
    2. muladd
    3. subdi
    4. subdir
    5. ine0
    6. mulneg1
    7. mulneg2
    8. mulneg12
    9. mul2neg
    10. submul2
    11. mulm1
    12. addneg1mul
    13. mulsub
    14. mulsub2
    15. mulm1i
    16. mulneg1i
    17. mulneg2i
    18. mul2negi
    19. subdii
    20. subdiri
    21. muladdi
    22. mulm1d
    23. mulneg1d
    24. mulneg2d
    25. mul2negd
    26. subdid
    27. subdird
    28. muladdd
    29. mulsubd
    30. muls1d
    31. mulsubfacd
    32. addmulsub
    33. subaddmulsub
    34. mulsubaddmulsub
  4. Ordering on reals (cont.)
    1. gt0ne0
    2. lt0ne0
    3. ltadd1
    4. leadd1
    5. leadd2
    6. ltsubadd
    7. ltsubadd2
    8. lesubadd
    9. lesubadd2
    10. ltaddsub
    11. ltaddsub2
    12. leaddsub
    13. leaddsub2
    14. suble
    15. lesub
    16. ltsub23
    17. ltsub13
    18. le2add
    19. ltleadd
    20. leltadd
    21. lt2add
    22. addgt0
    23. addgegt0
    24. addgtge0
    25. addge0
    26. ltaddpos
    27. ltaddpos2
    28. ltsubpos
    29. posdif
    30. lesub1
    31. lesub2
    32. ltsub1
    33. ltsub2
    34. lt2sub
    35. le2sub
    36. ltneg
    37. ltnegcon1
    38. ltnegcon2
    39. leneg
    40. lenegcon1
    41. lenegcon2
    42. lt0neg1
    43. lt0neg2
    44. le0neg1
    45. le0neg2
    46. addge01
    47. addge02
    48. add20
    49. subge0
    50. suble0
    51. leaddle0
    52. subge02
    53. lesub0
    54. mulge0
    55. mullt0
    56. msqgt0
    57. msqge0
    58. 0lt1
    59. 0le1
    60. relin01
    61. ltordlem
    62. ltord1
    63. leord1
    64. eqord1
    65. ltord2
    66. leord2
    67. eqord2
    68. wloglei
    69. wlogle
    70. leidi
    71. gt0ne0i
    72. gt0ne0ii
    73. msqgt0i
    74. msqge0i
    75. addgt0i
    76. addge0i
    77. addgegt0i
    78. addgt0ii
    79. add20i
    80. ltnegi
    81. lenegi
    82. ltnegcon2i
    83. mulge0i
    84. lesub0i
    85. ltaddposi
    86. posdifi
    87. ltnegcon1i
    88. lenegcon1i
    89. subge0i
    90. ltadd1i
    91. leadd1i
    92. leadd2i
    93. ltsubaddi
    94. lesubaddi
    95. ltsubadd2i
    96. lesubadd2i
    97. ltaddsubi
    98. lt2addi
    99. le2addi
    100. gt0ne0d
    101. lt0ne0d
    102. leidd
    103. msqgt0d
    104. msqge0d
    105. lt0neg1d
    106. lt0neg2d
    107. le0neg1d
    108. le0neg2d
    109. addgegt0d
    110. addgtge0d
    111. addgt0d
    112. addge0d
    113. mulge0d
    114. ltnegd
    115. lenegd
    116. ltnegcon1d
    117. ltnegcon2d
    118. lenegcon1d
    119. lenegcon2d
    120. ltaddposd
    121. ltaddpos2d
    122. ltsubposd
    123. posdifd
    124. addge01d
    125. addge02d
    126. subge0d
    127. suble0d
    128. subge02d
    129. ltadd1d
    130. leadd1d
    131. leadd2d
    132. ltsubaddd
    133. lesubaddd
    134. ltsubadd2d
    135. lesubadd2d
    136. ltaddsubd
    137. ltaddsub2d
    138. leaddsub2d
    139. subled
    140. lesubd
    141. ltsub23d
    142. ltsub13d
    143. lesub1d
    144. lesub2d
    145. ltsub1d
    146. ltsub2d
    147. ltadd1dd
    148. ltsub1dd
    149. ltsub2dd
    150. leadd1dd
    151. leadd2dd
    152. lesub1dd
    153. lesub2dd
    154. lesub3d
    155. le2addd
    156. le2subd
    157. ltleaddd
    158. leltaddd
    159. lt2addd
    160. lt2subd
    161. possumd
    162. sublt0d
    163. ltaddsublt
    164. 1le1
  5. Reciprocals
    1. ixi
    2. recextlem1
    3. recextlem2
    4. recex
    5. mulcand
    6. mulcan2d
    7. mulcanad
    8. mulcan2ad
    9. mulcan
    10. mulcan2
    11. mulcani
    12. mul0or
    13. mulne0b
    14. mulne0
    15. mulne0i
    16. muleqadd
    17. receu
    18. mulnzcnf
    19. msq0i
    20. mul0ori
    21. msq0d
    22. mul0ord
    23. mulne0bd
    24. mulne0d
    25. mulcan1g
    26. mulcan2g
    27. mulne0bad
    28. mulne0bbd
  6. Division
    1. cdiv
    2. df-div
    3. 1div0
    4. 1div0OLD
    5. divval
    6. divmul
    7. divmul2
    8. divmul3
    9. divcl
    10. reccl
    11. divcan2
    12. divcan1
    13. diveq0
    14. divne0b
    15. divne0
    16. recne0
    17. recid
    18. recid2
    19. divrec
    20. divrec2
    21. divass
    22. div23
    23. div32
    24. div13
    25. div12
    26. divmulass
    27. divmulasscom
    28. divdir
    29. divcan3
    30. divcan4
    31. div11
    32. div11OLD
    33. diveq1
    34. divid
    35. dividOLD
    36. div0
    37. div0OLD
    38. div1
    39. 1div1e1
    40. divneg
    41. muldivdir
    42. divsubdir
    43. subdivcomb1
    44. subdivcomb2
    45. recrec
    46. rec11
    47. rec11r
    48. divmuldiv
    49. divdivdiv
    50. divcan5
    51. divmul13
    52. divmul24
    53. divmuleq
    54. recdiv
    55. divcan6
    56. divdiv32
    57. divcan7
    58. dmdcan
    59. divdiv1
    60. divdiv2
    61. recdiv2
    62. ddcan
    63. divadddiv
    64. divsubdiv
    65. conjmul
    66. rereccl
    67. redivcl
    68. eqneg
    69. eqnegd
    70. eqnegad
    71. div2neg
    72. divneg2
    73. recclzi
    74. recne0zi
    75. recidzi
    76. div1i
    77. eqnegi
    78. reccli
    79. recidi
    80. recreci
    81. dividi
    82. div0i
    83. divclzi
    84. divcan1zi
    85. divcan2zi
    86. divreczi
    87. divcan3zi
    88. divcan4zi
    89. rec11i
    90. divcli
    91. divcan2i
    92. divcan1i
    93. divreci
    94. divcan3i
    95. divcan4i
    96. divne0i
    97. rec11ii
    98. divasszi
    99. divmulzi
    100. divdirzi
    101. divdiv23zi
    102. divmuli
    103. divdiv32i
    104. divassi
    105. divdiri
    106. div23i
    107. div11i
    108. divmuldivi
    109. divmul13i
    110. divadddivi
    111. divdivdivi
    112. rerecclzi
    113. rereccli
    114. redivclzi
    115. redivcli
    116. div1d
    117. reccld
    118. recne0d
    119. recidd
    120. recid2d
    121. recrecd
    122. dividd
    123. div0d
    124. divcld
    125. divcan1d
    126. divcan2d
    127. divrecd
    128. divrec2d
    129. divcan3d
    130. divcan4d
    131. diveq0d
    132. diveq1d
    133. diveq1ad
    134. diveq0ad
    135. divne1d
    136. divne0bd
    137. divnegd
    138. divneg2d
    139. div2negd
    140. divne0d
    141. recdivd
    142. recdiv2d
    143. divcan6d
    144. ddcand
    145. rec11d
    146. divmuld
    147. div32d
    148. div13d
    149. divdiv32d
    150. divcan5d
    151. divcan5rd
    152. divcan7d
    153. dmdcand
    154. dmdcan2d
    155. divdiv1d
    156. divdiv2d
    157. divmul2d
    158. divmul3d
    159. divassd
    160. div12d
    161. div23d
    162. divdird
    163. divsubdird
    164. div11d
    165. divmuldivd
    166. divmul13d
    167. divmul24d
    168. divadddivd
    169. divsubdivd
    170. divmuleqd
    171. divdivdivd
    172. diveq1bd
    173. div2sub
    174. div2subd
    175. rereccld
    176. redivcld
    177. subrecd
    178. subrec
    179. subreci
    180. mvllmuld
    181. mvllmuli
    182. ldiv
    183. rdiv
    184. mdiv
    185. lineq
  7. Ordering on reals (cont.)
    1. elimgt0
    2. elimge0
    3. ltp1
    4. lep1
    5. ltm1
    6. lem1
    7. letrp1
    8. p1le
    9. recgt0
    10. prodgt0
    11. prodgt02
    12. ltmul1a
    13. ltmul1
    14. ltmul2
    15. lemul1
    16. lemul2
    17. lemul1a
    18. lemul2a
    19. ltmul12a
    20. lemul12b
    21. lemul12a
    22. mulgt1OLD
    23. ltmulgt11
    24. ltmulgt12
    25. mulgt1
    26. lemulge11
    27. lemulge12
    28. ltdiv1
    29. lediv1
    30. gt0div
    31. ge0div
    32. divgt0
    33. divge0
    34. mulge0b
    35. mulle0b
    36. mulsuble0b
    37. ltmuldiv
    38. ltmuldiv2
    39. ltdivmul
    40. ledivmul
    41. ltdivmul2
    42. lt2mul2div
    43. ledivmul2
    44. lemuldiv
    45. lemuldiv2
    46. ltrec
    47. lerec
    48. lt2msq1
    49. lt2msq
    50. ltdiv2
    51. ltrec1
    52. lerec2
    53. ledivdiv
    54. lediv2
    55. ltdiv23
    56. lediv23
    57. lediv12a
    58. lediv2a
    59. reclt1
    60. recgt1
    61. recgt1i
    62. recp1lt1
    63. recreclt
    64. le2msq
    65. msq11
    66. ledivp1
    67. squeeze0
    68. ltp1i
    69. recgt0i
    70. recgt0ii
    71. prodgt0i
    72. divgt0i
    73. divge0i
    74. ltreci
    75. lereci
    76. lt2msqi
    77. le2msqi
    78. msq11i
    79. divgt0i2i
    80. ltrecii
    81. divgt0ii
    82. ltmul1i
    83. ltdiv1i
    84. ltmuldivi
    85. ltmul2i
    86. lemul1i
    87. lemul2i
    88. ltdiv23i
    89. ledivp1i
    90. ltdivp1i
    91. ltdiv23ii
    92. ltmul1ii
    93. ltdiv1ii
    94. ltp1d
    95. lep1d
    96. ltm1d
    97. lem1d
    98. recgt0d
    99. divgt0d
    100. mulgt1d
    101. lemulge11d
    102. lemulge12d
    103. lemul1ad
    104. lemul2ad
    105. ltmul12ad
    106. lemul12ad
    107. lemul12bd
  8. Completeness Axiom and Suprema
    1. fimaxre
    2. fimaxre2
    3. fimaxre3
    4. fiminre
    5. fiminre2
    6. negfi
    7. lbreu
    8. lbcl
    9. lble
    10. lbinf
    11. lbinfcl
    12. lbinfle
    13. sup2
    14. sup3
    15. infm3lem
    16. infm3
    17. suprcl
    18. suprub
    19. suprubd
    20. suprcld
    21. suprlub
    22. suprnub
    23. suprleub
    24. supaddc
    25. supadd
    26. supmul1
    27. supmullem1
    28. supmullem2
    29. supmul
    30. sup3ii
    31. suprclii
    32. suprubii
    33. suprlubii
    34. suprnubii
    35. suprleubii
    36. riotaneg
    37. negiso
    38. dfinfre
    39. infrecl
    40. infrenegsup
    41. infregelb
    42. infrelb
    43. infrefilb
    44. supfirege
  9. Imaginary and complex number properties
    1. inelr
    2. rimul
    3. cru
    4. crne0
    5. creur
    6. creui
    7. cju
  10. Function operation analogue theorems
    1. ofsubeq0
    2. ofnegsub
    3. ofsubge0