Metamath Proof Explorer
Table of Contents - 5.6. Elementary integer functions
- The floor and ceiling functions
- cfl
- cceil
- df-fl
- df-ceil
- flval
- flcl
- reflcl
- fllelt
- flcld
- flle
- flltp1
- fllep1
- fraclt1
- fracle1
- fracge0
- flge
- fllt
- flflp1
- flid
- flidm
- flidz
- flltnz
- flwordi
- flword2
- flval2
- flval3
- flbi
- flbi2
- adddivflid
- ico01fl0
- flge0nn0
- flge1nn
- fldivnn0
- refldivcl
- divfl0
- fladdz
- flzadd
- flmulnn0
- btwnzge0
- 2tnp1ge0ge0
- flhalf
- fldivle
- fldivnn0le
- flltdivnn0lt
- ltdifltdiv
- fldiv4p1lem1div2
- fldiv4lem1div2uz2
- fldiv4lem1div2
- ceilval
- dfceil2
- ceilval2
- ceicl
- ceilcl
- ceige
- ceilge
- ceim1l
- ceilm1lt
- ceile
- ceille
- ceilid
- ceilidz
- flleceil
- fleqceilz
- quoremz
- quoremnn0
- quoremnn0ALT
- intfrac2
- intfracq
- fldiv
- fldiv2
- fznnfl
- uzsup
- ioopnfsup
- icopnfsup
- rpsup
- resup
- xrsup
- The modulo (remainder) operation
- cmo
- df-mod
- modval
- modvalr
- modcl
- flpmodeq
- modcld
- mod0
- mulmod0
- negmod0
- modge0
- modlt
- modelico
- moddiffl
- moddifz
- modfrac
- flmod
- intfrac
- zmod10
- zmod1congr
- modmulnn
- modvalp1
- zmodcl
- zmodcld
- zmodfz
- zmodfzo
- zmodfzp1
- modid
- modid0
- modid2
- zmodid2
- zmodidfzo
- zmodidfzoimp
- 0mod
- 1mod
- modabs
- modabs2
- modcyc
- modcyc2
- modadd1
- modaddabs
- modaddmod
- muladdmodid
- mulp1mod1
- modmuladd
- modmuladdim
- modmuladdnn0
- negmod
- m1modnnsub1
- m1modge3gt1
- addmodid
- addmodidr
- modadd2mod
- modm1p1mod0
- modltm1p1mod
- modmul1
- modmul12d
- modnegd
- modadd12d
- modsub12d
- modsubmod
- modsubmodmod
- 2txmodxeq0
- 2submod
- modifeq2int
- modaddmodup
- modaddmodlo
- modmulmod
- modmulmodr
- modaddmulmod
- moddi
- modsubdir
- modeqmodmin
- modirr
- modfzo0difsn
- modsumfzodifsn
- modlteq
- addmodlteq
- Miscellaneous theorems about integers
- om2uz0i
- om2uzsuci
- om2uzuzi
- om2uzlti
- om2uzlt2i
- om2uzrani
- om2uzf1oi
- om2uzisoi
- om2uzoi
- om2uzrdg
- uzrdglem
- uzrdgfni
- uzrdg0i
- uzrdgsuci
- ltweuz
- ltwenn
- ltwefz
- uzenom
- uzinf
- nnnfi
- uzrdgxfr
- fzennn
- fzen2
- cardfz
- hashgf1o
- fzfi
- fzfid
- fzofi
- fsequb
- fsequb2
- fseqsupcl
- fseqsupubi
- nn0ennn
- nnenom
- nnct
- uzindi
- axdc4uzlem
- axdc4uz
- ssnn0fi
- rabssnn0fi
- Strong induction over upper sets of integers
- uzsinds
- nnsinds
- nn0sinds
- Finitely supported functions over the nonnegative integers
- fsuppmapnn0fiublem
- fsuppmapnn0fiub
- fsuppmapnn0fiubex
- fsuppmapnn0fiub0
- suppssfz
- fsuppmapnn0ub
- fsuppmapnn0fz
- mptnn0fsupp
- mptnn0fsuppd
- mptnn0fsuppr
- f13idfv
- The infinite sequence builder "seq" - extension
- cseq
- df-seq
- seqex
- seqeq1
- seqeq2
- seqeq3
- seqeq1d
- seqeq2d
- seqeq3d
- seqeq123d
- nfseq
- seqval
- seqfn
- seq1
- seq1i
- seqp1
- seqexw
- seqp1d
- seqp1iOLD
- seqm1
- seqcl2
- seqf2
- seqcl
- seqf
- seqfveq2
- seqfeq2
- seqfveq
- seqfeq
- seqshft2
- seqres
- serf
- serfre
- monoord
- monoord2
- sermono
- seqsplit
- seq1p
- seqcaopr3
- seqcaopr2
- seqcaopr
- seqf1olem2a
- seqf1olem1
- seqf1olem2
- seqf1o
- seradd
- sersub
- seqid3
- seqid
- seqid2
- seqhomo
- seqz
- seqfeq4
- seqfeq3
- seqdistr
- ser0
- ser0f
- serge0
- serle
- ser1const
- seqof
- seqof2
- Integer powers
- cexp
- df-exp
- expval
- expnnval
- exp0
- 0exp0e1
- exp1
- expp1
- expneg
- expneg2
- expn1
- expcllem
- expcl2lem
- nnexpcl
- nn0expcl
- zexpcl
- qexpcl
- reexpcl
- expcl
- rpexpcl
- reexpclz
- qexpclz
- m1expcl2
- m1expcl
- expclzlem
- expclz
- nn0expcli
- nn0sqcl
- expm1t
- 1exp
- expeq0
- expne0
- expne0i
- expgt0
- expnegz
- 0exp
- expge0
- expge1
- expgt1
- mulexp
- mulexpz
- exprec
- expadd
- expaddzlem
- expaddz
- expmul
- expmulz
- m1expeven
- expsub
- expp1z
- expm1
- expdiv
- sqval
- sqneg
- sqsubswap
- sqcl
- sqmul
- sqeq0
- sqdiv
- sqdivid
- sqne0
- resqcl
- sqgt0
- sqn0rp
- nnsqcl
- zsqcl
- qsqcl
- sq11
- nn0sq11
- lt2sq
- le2sq
- le2sq2
- sqge0
- zsqcl2
- 0expd
- exp0d
- exp1d
- expeq0d
- sqvald
- sqcld
- sqeq0d
- expcld
- expp1d
- expaddd
- expmuld
- sqrecd
- expclzd
- expne0d
- expnegd
- exprecd
- expp1zd
- expm1d
- expsubd
- sqmuld
- sqdivd
- expdivd
- mulexpd
- znsqcld
- reexpcld
- expge0d
- expge1d
- ltexp2a
- expmordi
- rpexpmord
- expcan
- ltexp2
- leexp2
- leexp2a
- ltexp2r
- leexp2r
- leexp1a
- exple1
- expubnd
- sumsqeq0
- sqvali
- sqcli
- sqeq0i
- sqrecii
- sqmuli
- sqdivi
- resqcli
- sqgt0i
- sqge0i
- lt2sqi
- le2sqi
- sq11i
- sq0
- sq0i
- sq0id
- sq1
- neg1sqe1
- sq2
- sq3
- sq4e2t8
- cu2
- irec
- i2
- i3
- i4
- nnlesq
- iexpcyc
- expnass
- sqlecan
- subsq
- subsq2
- binom2i
- subsqi
- sqeqori
- subsq0i
- sqeqor
- binom2
- binom21
- binom2sub
- binom2sub1
- binom2subi
- mulbinom2
- binom3
- sq01
- zesq
- nnesq
- crreczi
- bernneq
- bernneq2
- bernneq3
- expnbnd
- expnlbnd
- expnlbnd2
- expmulnbnd
- digit2
- digit1
- modexp
- discr1
- discr
- expnngt1
- expnngt1b
- sqoddm1div8
- nnsqcld
- nnexpcld
- nn0expcld
- rpexpcld
- ltexp2rd
- reexpclzd
- resqcld
- sqge0d
- sqgt0d
- ltexp2d
- leexp2d
- expcand
- leexp2ad
- leexp2rd
- lt2sqd
- le2sqd
- sq11d
- mulsubdivbinom2
- muldivbinom2
- sq10
- sq10e99m1
- 3dec
- Ordered pair theorem for nonnegative integers
- nn0le2msqi
- nn0opthlem1
- nn0opthlem2
- nn0opthi
- nn0opth2i
- nn0opth2
- Factorial function
- cfa
- df-fac
- facnn
- fac0
- fac1
- facp1
- fac2
- fac3
- fac4
- facnn2
- faccl
- faccld
- facmapnn
- facne0
- facdiv
- facndiv
- facwordi
- faclbnd
- faclbnd2
- faclbnd3
- faclbnd4lem1
- faclbnd4lem2
- faclbnd4lem3
- faclbnd4lem4
- faclbnd4
- faclbnd5
- faclbnd6
- facubnd
- facavg
- The binomial coefficient operation
- cbc
- df-bc
- bcval
- bcval2
- bcval3
- bcval4
- bcrpcl
- bccmpl
- bcn0
- bc0k
- bcnn
- bcn1
- bcnp1n
- bcm1k
- bcp1n
- bcp1nk
- bcval5
- bcn2
- bcp1m1
- bcpasc
- bccl
- bccl2
- bcn2m1
- bcn2p1
- permnn
- bcnm1
- 4bc3eq4
- 4bc2eq6
- The ` # ` (set size) function
- chash
- df-hash
- hashkf
- hashgval
- hashginv
- hashinf
- hashbnd
- hashfxnn0
- hashf
- hashxnn0
- hashresfn
- dmhashres
- hashnn0pnf
- hashnnn0genn0
- hashnemnf
- hashv01gt1
- hashfz1
- hashen
- hasheni
- hasheqf1o
- fiinfnf1o
- focdmex
- hasheqf1oi
- hashf1rn
- hasheqf1od
- fz1eqb
- hashcard
- hashcl
- hashxrcl
- hashclb
- nfile
- hashvnfin
- hashnfinnn0
- isfinite4
- hasheq0
- hashneq0
- hashgt0n0
- hashnncl
- hash0
- hashelne0d
- hashsng
- hashen1
- hash1elsn
- hashrabrsn
- hashrabsn01
- hashrabsn1
- hashfn
- fseq1hash
- hashgadd
- hashgval2
- hashdom
- hashdomi
- hashsdom
- hashun
- hashun2
- hashun3
- hashinfxadd
- hashunx
- hashge0
- hashgt0
- hashge1
- 1elfz0hash
- hashnn0n0nn
- hashunsng
- hashunsngx
- hashunsnggt
- hashprg
- elprchashprn2
- hashprb
- hashprdifel
- prhash2ex
- hashle00
- hashgt0elex
- hashgt0elexb
- hashp1i
- hash1
- hash2
- hash3
- hash4
- pr0hash2ex
- hashss
- prsshashgt1
- hashin
- hashssdif
- hashdif
- hashdifsn
- hashdifpr
- hashsn01
- hashsnle1
- hashsnlei
- hash1snb
- euhash1
- hash1n0
- hashgt12el
- hashgt12el2
- hashgt23el
- hashunlei
- hashsslei
- hashfz
- fzsdom2
- hashfzo
- hashfzo0
- hashfzp1
- hashfz0
- hashxplem
- hashxp
- hashmap
- hashpw
- hashfun
- hashres
- hashreshashfun
- hashimarn
- hashimarni
- resunimafz0
- fnfz0hash
- ffz0hash
- fnfz0hashnn0
- ffzo0hash
- fnfzo0hash
- fnfzo0hashnn0
- hashbclem
- hashbc
- hashfacen
- hashfacenOLD
- hashf1lem1
- hashf1lem1OLD
- hashf1lem2
- hashf1
- hashfac
- leiso
- leisorel
- fz1isolem
- fz1iso
- ishashinf
- seqcoll
- seqcoll2
- phphashd
- phphashrd
- Proper unordered pairs and triples (sets of size 2 and 3)
- Functions with a domain containing at least two different elements
- Finite induction on the size of the first component of a binary relation