Metamath Proof Explorer


Table of Contents - 5.6. Elementary integer functions

  1. The floor and ceiling functions
    1. cfl
    2. cceil
    3. df-fl
    4. df-ceil
    5. flval
    6. flcl
    7. reflcl
    8. fllelt
    9. flcld
    10. flle
    11. flltp1
    12. fllep1
    13. fraclt1
    14. fracle1
    15. fracge0
    16. flge
    17. fllt
    18. flflp1
    19. flid
    20. flidm
    21. flidz
    22. flltnz
    23. flwordi
    24. flword2
    25. flval2
    26. flval3
    27. flbi
    28. flbi2
    29. adddivflid
    30. ico01fl0
    31. flge0nn0
    32. flge1nn
    33. fldivnn0
    34. refldivcl
    35. divfl0
    36. fladdz
    37. flzadd
    38. flmulnn0
    39. btwnzge0
    40. 2tnp1ge0ge0
    41. flhalf
    42. fldivle
    43. fldivnn0le
    44. flltdivnn0lt
    45. ltdifltdiv
    46. fldiv4p1lem1div2
    47. fldiv4lem1div2uz2
    48. fldiv4lem1div2
    49. ceilval
    50. dfceil2
    51. ceilval2
    52. ceicl
    53. ceilcl
    54. ceilcld
    55. ceige
    56. ceilge
    57. ceilged
    58. ceim1l
    59. ceilm1lt
    60. ceile
    61. ceille
    62. ceilid
    63. ceilidz
    64. flleceil
    65. fleqceilz
    66. quoremz
    67. quoremnn0
    68. quoremnn0ALT
    69. intfrac2
    70. intfracq
    71. fldiv
    72. fldiv2
    73. fznnfl
    74. uzsup
    75. ioopnfsup
    76. icopnfsup
    77. rpsup
    78. resup
    79. xrsup
  2. The modulo (remainder) operation
    1. cmo
    2. df-mod
    3. modval
    4. modvalr
    5. modcl
    6. flpmodeq
    7. modcld
    8. mod0
    9. mulmod0
    10. negmod0
    11. modge0
    12. modlt
    13. modelico
    14. moddiffl
    15. moddifz
    16. modfrac
    17. flmod
    18. intfrac
    19. zmod10
    20. zmod1congr
    21. modmulnn
    22. modvalp1
    23. zmodcl
    24. zmodcld
    25. zmodfz
    26. zmodfzo
    27. zmodfzp1
    28. modid
    29. modid0
    30. modid2
    31. zmodid2
    32. zmodidfzo
    33. zmodidfzoimp
    34. 0mod
    35. 1mod
    36. modabs
    37. modabs2
    38. modcyc
    39. modcyc2
    40. modadd1
    41. modaddabs
    42. modaddmod
    43. muladdmodid
    44. mulp1mod1
    45. modmuladd
    46. modmuladdim
    47. modmuladdnn0
    48. negmod
    49. m1modnnsub1
    50. m1modge3gt1
    51. addmodid
    52. addmodidr
    53. modadd2mod
    54. modm1p1mod0
    55. modltm1p1mod
    56. modmul1
    57. modmul12d
    58. modnegd
    59. modadd12d
    60. modsub12d
    61. modsubmod
    62. modsubmodmod
    63. 2txmodxeq0
    64. 2submod
    65. modifeq2int
    66. modaddmodup
    67. modaddmodlo
    68. modmulmod
    69. modmulmodr
    70. modaddmulmod
    71. moddi
    72. modsubdir
    73. modeqmodmin
    74. modirr
    75. modfzo0difsn
    76. modsumfzodifsn
    77. modlteq
    78. addmodlteq
  3. Miscellaneous theorems about integers
    1. om2uz0i
    2. om2uzsuci
    3. om2uzuzi
    4. om2uzlti
    5. om2uzlt2i
    6. om2uzrani
    7. om2uzf1oi
    8. om2uzisoi
    9. om2uzoi
    10. om2uzrdg
    11. uzrdglem
    12. uzrdgfni
    13. uzrdg0i
    14. uzrdgsuci
    15. ltweuz
    16. ltwenn
    17. ltwefz
    18. uzenom
    19. uzinf
    20. nnnfi
    21. uzrdgxfr
    22. fzennn
    23. fzen2
    24. cardfz
    25. hashgf1o
    26. fzfi
    27. fzfid
    28. fzofi
    29. fsequb
    30. fsequb2
    31. fseqsupcl
    32. fseqsupubi
    33. nn0ennn
    34. nnenom
    35. nnct
    36. uzindi
    37. axdc4uzlem
    38. axdc4uz
    39. ssnn0fi
    40. rabssnn0fi
  4. Strong induction over upper sets of integers
    1. uzsinds
    2. nnsinds
    3. nn0sinds
  5. Finitely supported functions over the nonnegative integers
    1. fsuppmapnn0fiublem
    2. fsuppmapnn0fiub
    3. fsuppmapnn0fiubex
    4. fsuppmapnn0fiub0
    5. suppssfz
    6. fsuppmapnn0ub
    7. fsuppmapnn0fz
    8. mptnn0fsupp
    9. mptnn0fsuppd
    10. mptnn0fsuppr
    11. f13idfv
  6. The infinite sequence builder "seq" - extension
    1. cseq
    2. df-seq
    3. seqex
    4. seqeq1
    5. seqeq2
    6. seqeq3
    7. seqeq1d
    8. seqeq2d
    9. seqeq3d
    10. seqeq123d
    11. nfseq
    12. seqval
    13. seqfn
    14. seq1
    15. seq1i
    16. seqp1
    17. seqexw
    18. seqp1d
    19. seqp1iOLD
    20. seqm1
    21. seqcl2
    22. seqf2
    23. seqcl
    24. seqf
    25. seqfveq2
    26. seqfeq2
    27. seqfveq
    28. seqfeq
    29. seqshft2
    30. seqres
    31. serf
    32. serfre
    33. monoord
    34. monoord2
    35. sermono
    36. seqsplit
    37. seq1p
    38. seqcaopr3
    39. seqcaopr2
    40. seqcaopr
    41. seqf1olem2a
    42. seqf1olem1
    43. seqf1olem2
    44. seqf1o
    45. seradd
    46. sersub
    47. seqid3
    48. seqid
    49. seqid2
    50. seqhomo
    51. seqz
    52. seqfeq4
    53. seqfeq3
    54. seqdistr
    55. ser0
    56. ser0f
    57. serge0
    58. serle
    59. ser1const
    60. seqof
    61. seqof2
  7. Integer powers
    1. cexp
    2. df-exp
    3. expval
    4. expnnval
    5. exp0
    6. 0exp0e1
    7. exp1
    8. expp1
    9. expneg
    10. expneg2
    11. expn1
    12. expcllem
    13. expcl2lem
    14. nnexpcl
    15. nn0expcl
    16. zexpcl
    17. qexpcl
    18. reexpcl
    19. expcl
    20. rpexpcl
    21. reexpclz
    22. qexpclz
    23. m1expcl2
    24. m1expcl
    25. expclzlem
    26. expclz
    27. zexpcld
    28. nn0expcli
    29. nn0sqcl
    30. expm1t
    31. 1exp
    32. expeq0
    33. expne0
    34. expne0i
    35. expgt0
    36. expnegz
    37. 0exp
    38. expge0
    39. expge1
    40. expgt1
    41. mulexp
    42. mulexpz
    43. exprec
    44. expadd
    45. expaddzlem
    46. expaddz
    47. expmul
    48. expmulz
    49. m1expeven
    50. expsub
    51. expp1z
    52. expm1
    53. expdiv
    54. sqval
    55. sqneg
    56. sqsubswap
    57. sqcl
    58. sqmul
    59. sqeq0
    60. sqdiv
    61. sqdivid
    62. sqne0
    63. resqcl
    64. sqgt0
    65. sqn0rp
    66. nnsqcl
    67. zsqcl
    68. qsqcl
    69. sq11
    70. nn0sq11
    71. lt2sq
    72. le2sq
    73. le2sq2
    74. sqge0
    75. zsqcl2
    76. 0expd
    77. exp0d
    78. exp1d
    79. expeq0d
    80. sqvald
    81. sqcld
    82. sqeq0d
    83. expcld
    84. expp1d
    85. expaddd
    86. expmuld
    87. sqrecd
    88. expclzd
    89. expne0d
    90. expnegd
    91. exprecd
    92. expp1zd
    93. expm1d
    94. expsubd
    95. sqmuld
    96. sqdivd
    97. expdivd
    98. mulexpd
    99. znsqcld
    100. reexpcld
    101. expge0d
    102. expge1d
    103. ltexp2a
    104. expmordi
    105. rpexpmord
    106. expcan
    107. ltexp2
    108. leexp2
    109. leexp2a
    110. ltexp2r
    111. leexp2r
    112. leexp1a
    113. exple1
    114. expubnd
    115. sumsqeq0
    116. sqvali
    117. sqcli
    118. sqeq0i
    119. sqrecii
    120. sqmuli
    121. sqdivi
    122. resqcli
    123. sqgt0i
    124. sqge0i
    125. lt2sqi
    126. le2sqi
    127. sq11i
    128. sq0
    129. sq0i
    130. sq0id
    131. sq1
    132. neg1sqe1
    133. sq2
    134. sq3
    135. sq4e2t8
    136. cu2
    137. irec
    138. i2
    139. i3
    140. i4
    141. nnlesq
    142. iexpcyc
    143. expnass
    144. sqlecan
    145. subsq
    146. subsq2
    147. binom2i
    148. subsqi
    149. sqeqori
    150. subsq0i
    151. sqeqor
    152. binom2
    153. binom21
    154. binom2sub
    155. binom2sub1
    156. binom2subi
    157. mulbinom2
    158. binom3
    159. sq01
    160. zesq
    161. nnesq
    162. crreczi
    163. bernneq
    164. bernneq2
    165. bernneq3
    166. expnbnd
    167. expnlbnd
    168. expnlbnd2
    169. expmulnbnd
    170. digit2
    171. digit1
    172. modexp
    173. discr1
    174. discr
    175. expnngt1
    176. expnngt1b
    177. sqoddm1div8
    178. nnsqcld
    179. nnexpcld
    180. nn0expcld
    181. rpexpcld
    182. ltexp2rd
    183. reexpclzd
    184. resqcld
    185. sqge0d
    186. sqgt0d
    187. ltexp2d
    188. leexp2d
    189. expcand
    190. leexp2ad
    191. leexp2rd
    192. lt2sqd
    193. le2sqd
    194. sq11d
    195. mulsubdivbinom2
    196. muldivbinom2
    197. sq10
    198. sq10e99m1
    199. 3dec
  8. Ordered pair theorem for nonnegative integers
    1. nn0le2msqi
    2. nn0opthlem1
    3. nn0opthlem2
    4. nn0opthi
    5. nn0opth2i
    6. nn0opth2
  9. Factorial function
    1. cfa
    2. df-fac
    3. facnn
    4. fac0
    5. fac1
    6. facp1
    7. fac2
    8. fac3
    9. fac4
    10. facnn2
    11. faccl
    12. faccld
    13. facmapnn
    14. facne0
    15. facdiv
    16. facndiv
    17. facwordi
    18. faclbnd
    19. faclbnd2
    20. faclbnd3
    21. faclbnd4lem1
    22. faclbnd4lem2
    23. faclbnd4lem3
    24. faclbnd4lem4
    25. faclbnd4
    26. faclbnd5
    27. faclbnd6
    28. facubnd
    29. facavg
  10. The binomial coefficient operation
    1. cbc
    2. df-bc
    3. bcval
    4. bcval2
    5. bcval3
    6. bcval4
    7. bcrpcl
    8. bccmpl
    9. bcn0
    10. bc0k
    11. bcnn
    12. bcn1
    13. bcnp1n
    14. bcm1k
    15. bcp1n
    16. bcp1nk
    17. bcval5
    18. bcn2
    19. bcp1m1
    20. bcpasc
    21. bccl
    22. bccl2
    23. bcn2m1
    24. bcn2p1
    25. permnn
    26. bcnm1
    27. 4bc3eq4
    28. 4bc2eq6
  11. The ` # ` (set size) function
    1. chash
    2. df-hash
    3. hashkf
    4. hashgval
    5. hashginv
    6. hashinf
    7. hashbnd
    8. hashfxnn0
    9. hashf
    10. hashxnn0
    11. hashresfn
    12. dmhashres
    13. hashnn0pnf
    14. hashnnn0genn0
    15. hashnemnf
    16. hashv01gt1
    17. hashfz1
    18. hashen
    19. hasheni
    20. hasheqf1o
    21. fiinfnf1o
    22. focdmex
    23. hasheqf1oi
    24. hashf1rn
    25. hasheqf1od
    26. fz1eqb
    27. hashcard
    28. hashcl
    29. hashxrcl
    30. hashclb
    31. nfile
    32. hashvnfin
    33. hashnfinnn0
    34. isfinite4
    35. hasheq0
    36. hashneq0
    37. hashgt0n0
    38. hashnncl
    39. hash0
    40. hashelne0d
    41. hashsng
    42. hashen1
    43. hash1elsn
    44. hashrabrsn
    45. hashrabsn01
    46. hashrabsn1
    47. hashfn
    48. fseq1hash
    49. hashgadd
    50. hashgval2
    51. hashdom
    52. hashdomi
    53. hashsdom
    54. hashun
    55. hashun2
    56. hashun3
    57. hashinfxadd
    58. hashunx
    59. hashge0
    60. hashgt0
    61. hashge1
    62. 1elfz0hash
    63. hashnn0n0nn
    64. hashunsng
    65. hashunsngx
    66. hashunsnggt
    67. hashprg
    68. elprchashprn2
    69. hashprb
    70. hashprdifel
    71. prhash2ex
    72. hashle00
    73. hashgt0elex
    74. hashgt0elexb
    75. hashp1i
    76. hash1
    77. hash2
    78. hash3
    79. hash4
    80. pr0hash2ex
    81. hashss
    82. prsshashgt1
    83. hashin
    84. hashssdif
    85. hashdif
    86. hashdifsn
    87. hashdifpr
    88. hashsn01
    89. hashsnle1
    90. hashsnlei
    91. hash1snb
    92. euhash1
    93. hash1n0
    94. hashgt12el
    95. hashgt12el2
    96. hashgt23el
    97. hashunlei
    98. hashsslei
    99. hashfz
    100. fzsdom2
    101. hashfzo
    102. hashfzo0
    103. hashfzp1
    104. hashfz0
    105. hashxplem
    106. hashxp
    107. hashmap
    108. hashpw
    109. hashfun
    110. hashres
    111. hashreshashfun
    112. hashimarn
    113. hashimarni
    114. resunimafz0
    115. fnfz0hash
    116. ffz0hash
    117. fnfz0hashnn0
    118. ffzo0hash
    119. fnfzo0hash
    120. fnfzo0hashnn0
    121. hashbclem
    122. hashbc
    123. hashfacen
    124. hashfacenOLD
    125. hashf1lem1
    126. hashf1lem1OLD
    127. hashf1lem2
    128. hashf1
    129. hashfac
    130. leiso
    131. leisorel
    132. fz1isolem
    133. fz1iso
    134. ishashinf
    135. seqcoll
    136. seqcoll2
    137. phphashd
    138. phphashrd
    139. Proper unordered pairs and triples (sets of size 2 and 3)
    140. Functions with a domain containing at least two different elements
    141. Finite induction on the size of the first component of a binary relation