Metamath Proof Explorer
Table of Contents - 9. BASIC ORDER THEORY
- Dual of an order structure
- codu
- df-odu
- oduval
- oduleval
- oduleg
- odubas
- odubasOLD
- Preordered sets and directed sets
- cproset
- cdrs
- df-proset
- df-drs
- isprs
- prslem
- prsref
- prstr
- isdrs
- drsdir
- drsprs
- drsbn0
- drsdirfi
- isdrs2
- Partially ordered sets (posets)
- cpo
- cplt
- club
- cglb
- cjn
- cmee
- df-poset
- ispos
- ispos2
- posprs
- posi
- posref
- posasymb
- postr
- 0pos
- 0posOLD
- isposd
- isposi
- isposix
- isposixOLD
- pospropd
- odupos
- oduposb
- df-plt
- pltfval
- pltval
- pltle
- pltne
- pltirr
- pleval2i
- pleval2
- pltnle
- pltval3
- pltnlt
- pltn2lp
- plttr
- pltletr
- plelttr
- pospo
- df-lub
- df-glb
- df-join
- df-meet
- lubfval
- lubdm
- lubfun
- lubeldm
- lubelss
- lubeu
- lubval
- lubcl
- lubprop
- luble
- lublecllem
- lublecl
- lubid
- glbfval
- glbdm
- glbfun
- glbeldm
- glbelss
- glbeu
- glbval
- glbcl
- glbprop
- glble
- joinfval
- joinfval2
- joindm
- joindef
- joinval
- joincl
- joindmss
- joinval2lem
- joinval2
- joineu
- joinlem
- lejoin1
- lejoin2
- joinle
- meetfval
- meetfval2
- meetdm
- meetdef
- meetval
- meetcl
- meetdmss
- meetval2lem
- meetval2
- meeteu
- meetlem
- lemeet1
- lemeet2
- meetle
- joincomALT
- joincom
- meetcomALT
- meetcom
- join0
- meet0
- odulub
- odujoin
- oduglb
- odumeet
- poslubmo
- posglbmo
- poslubd
- poslubdg
- posglbdg
- Totally ordered sets (tosets)
- ctos
- df-toset
- istos
- tosso
- tospos
- tleile
- tltnle
- cp0
- cp1
- df-p0
- df-p1
- p0val
- p1val
- p0le
- ple1
- Lattices
- Lattices
- Complete lattices
- Distributive lattices
- Subset order structures
- Posets, directed sets, and lattices as relations
- Posets and lattices as relations
- Directed sets, nets