Metamath Proof Explorer


Table of Contents - 9. BASIC ORDER THEORY

  1. Dual of an order structure
    1. codu
    2. df-odu
    3. oduval
    4. oduleval
    5. oduleg
    6. odubas
    7. odubasOLD
  2. Preordered sets and directed sets
    1. cproset
    2. cdrs
    3. df-proset
    4. df-drs
    5. isprs
    6. prslem
    7. prsref
    8. prstr
    9. isdrs
    10. drsdir
    11. drsprs
    12. drsbn0
    13. drsdirfi
    14. isdrs2
  3. Partially ordered sets (posets)
    1. cpo
    2. cplt
    3. club
    4. cglb
    5. cjn
    6. cmee
    7. df-poset
    8. ispos
    9. ispos2
    10. posprs
    11. posi
    12. posref
    13. posasymb
    14. postr
    15. 0pos
    16. 0posOLD
    17. isposd
    18. isposi
    19. isposix
    20. isposixOLD
    21. pospropd
    22. odupos
    23. oduposb
    24. df-plt
    25. pltfval
    26. pltval
    27. pltle
    28. pltne
    29. pltirr
    30. pleval2i
    31. pleval2
    32. pltnle
    33. pltval3
    34. pltnlt
    35. pltn2lp
    36. plttr
    37. pltletr
    38. plelttr
    39. pospo
    40. df-lub
    41. df-glb
    42. df-join
    43. df-meet
    44. lubfval
    45. lubdm
    46. lubfun
    47. lubeldm
    48. lubelss
    49. lubeu
    50. lubval
    51. lubcl
    52. lubprop
    53. luble
    54. lublecllem
    55. lublecl
    56. lubid
    57. glbfval
    58. glbdm
    59. glbfun
    60. glbeldm
    61. glbelss
    62. glbeu
    63. glbval
    64. glbcl
    65. glbprop
    66. glble
    67. joinfval
    68. joinfval2
    69. joindm
    70. joindef
    71. joinval
    72. joincl
    73. joindmss
    74. joinval2lem
    75. joinval2
    76. joineu
    77. joinlem
    78. lejoin1
    79. lejoin2
    80. joinle
    81. meetfval
    82. meetfval2
    83. meetdm
    84. meetdef
    85. meetval
    86. meetcl
    87. meetdmss
    88. meetval2lem
    89. meetval2
    90. meeteu
    91. meetlem
    92. lemeet1
    93. lemeet2
    94. meetle
    95. joincomALT
    96. joincom
    97. meetcomALT
    98. meetcom
    99. join0
    100. meet0
    101. odulub
    102. odujoin
    103. oduglb
    104. odumeet
    105. poslubmo
    106. posglbmo
    107. poslubd
    108. poslubdg
    109. posglbdg
  4. Totally ordered sets (tosets)
    1. ctos
    2. df-toset
    3. istos
    4. tosso
    5. tospos
    6. tleile
    7. tltnle
    8. cp0
    9. cp1
    10. df-p0
    11. df-p1
    12. p0val
    13. p1val
    14. p0le
    15. ple1
  5. Lattices
    1. Lattices
    2. Complete lattices
    3. Distributive lattices
    4. Subset order structures
  6. Posets, directed sets, and lattices as relations
    1. Posets and lattices as relations
    2. Directed sets, nets