Metamath Proof Explorer


Table of Contents - 1.2.4. Logical negation

This section makes our first use of the third axiom of propositional calculus, ax-3. It introduces logical negation.

  1. con4
  2. con4i
  3. con4d
  4. mt4
  5. mt4d
  6. mt4i
  7. pm2.21i
  8. pm2.24ii
  9. pm2.21d
  10. pm2.21ddALT
  11. pm2.21
  12. pm2.24
  13. jarl
  14. jarli
  15. pm2.18d
  16. pm2.18
  17. pm2.18i
  18. notnotr
  19. notnotri
  20. notnotriALT
  21. notnotrd
  22. con2d
  23. con2
  24. mt2d
  25. mt2i
  26. nsyl3
  27. con2i
  28. nsyl
  29. nsyl2
  30. notnot
  31. notnoti
  32. notnotd
  33. con1d
  34. con1
  35. con1i
  36. mt3d
  37. mt3i
  38. pm2.24i
  39. pm2.24d
  40. con3d
  41. con3
  42. con3i
  43. con3rr3
  44. nsyld
  45. nsyli
  46. nsyl4
  47. nsyl5
  48. pm3.2im
  49. jc
  50. jcn
  51. jcnd
  52. impi
  53. expi
  54. simprim
  55. simplim
  56. pm2.5g
  57. pm2.5
  58. conax1
  59. conax1k
  60. pm2.51
  61. pm2.52
  62. pm2.521g
  63. pm2.521g2
  64. pm2.521
  65. expt
  66. impt
  67. pm2.61d
  68. pm2.61d1
  69. pm2.61d2
  70. pm2.61i
  71. pm2.61ii
  72. pm2.61nii
  73. pm2.61iii
  74. ja
  75. jad
  76. pm2.01
  77. pm2.01d
  78. pm2.6
  79. pm2.61
  80. pm2.65
  81. pm2.65i
  82. pm2.21dd
  83. pm2.65d
  84. mto
  85. mtod
  86. mtoi
  87. mt2
  88. mt3
  89. peirce
  90. looinv
  91. bijust0
  92. bijust