Metamath Proof Explorer


Table of Contents - 1.5. Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)

In this section we introduce four additional schemes ax-10, ax-11, ax-12, and ax-13 that are not part of Tarski's system but can be proved (outside of Metamath) as theorem schemes of Tarski's system. These are needed to give our system the property of "scheme completeness", which means that we can prove (with Metamath) all possible theorem schemes expressible in our language of wff metavariables ranging over object-language wffs, and setvar variables ranging over object-language individual variables.

To show that these schemes are valid metatheorems of Tarski's system S2, above we proved from Tarski's system theorems ax10w, ax11w, ax12w, and ax13w, which show that any object-language instance of these schemes (emulated by having no wff metavariables and requiring all setvar variables to be mutually distinct) can be proved using only the schemes in Tarski's system S2.

An open problem is to show that these four additional schemes are mutually metalogically independent and metalogically independent from Tarski's. So far, independence of ax-12 from all others has been shown, and independence of Tarski's ax-6 from all others has been shown; see items 9a and 11 on https://us.metamath.org/award2003.html.

  1. Axiom scheme ax-10 (Quantified Negation)
    1. ax-10
    2. hbn1
    3. hbe1
    4. hbe1a
    5. nf5-1
    6. nf5i
    7. nf5dh
    8. nf5dv
    9. nfnaew
    10. nfe1
    11. nfa1
    12. nfna1
    13. nfia1
    14. nfnf1
    15. modal5
    16. nfs1v
  2. Axiom scheme ax-11 (Quantifier Commutation)
    1. ax-11
    2. alcoms
    3. alcom
    4. alrot3
    5. alrot4
    6. excom
    7. excomim
    8. excom13
    9. exrot3
    10. exrot4
    11. hbal
    12. hbald
    13. sbal
    14. sbalv
    15. hbsbw
    16. hbsbwOLD
    17. sbcom2
    18. sbco4lemOLD
    19. sbco4OLD
    20. nfa2
  3. Axiom scheme ax-12 (Substitution)
    1. ax-12
    2. ax12v
    3. ax12v2
    4. ax12ev2
    5. 19.8a
    6. 19.8ad
    7. sp
    8. spi
    9. sps
    10. 2sp
    11. spsd
    12. 19.2g
    13. 19.21bi
    14. 19.21bbi
    15. 19.23bi
    16. nexr
    17. qexmid
    18. nf5r
    19. nf5ri
    20. nf5rd
    21. spimedv
    22. spimefv
    23. nfim1
    24. nfan1
    25. 19.3t
    26. 19.3
    27. 19.9d
    28. 19.9t
    29. 19.9
    30. 19.21t
    31. 19.21
    32. stdpc5
    33. 19.21-2
    34. 19.23t
    35. 19.23
    36. alimd
    37. alrimi
    38. alrimdd
    39. alrimd
    40. eximd
    41. exlimi
    42. exlimd
    43. exlimimdd
    44. exlimdd
    45. nexd
    46. albid
    47. exbid
    48. nfbidf
    49. 19.16
    50. 19.17
    51. 19.27
    52. 19.28
    53. 19.19
    54. 19.36
    55. 19.36i
    56. 19.37
    57. 19.32
    58. 19.31
    59. 19.41
    60. 19.42
    61. 19.44
    62. 19.45
    63. spimfv
    64. chvarfv
    65. cbv3v2
    66. sbalex
    67. sbalexOLD
    68. sb4av
    69. sbimd
    70. sbbid
    71. 2sbbid
    72. sbequ1
    73. sbequ2
    74. stdpc7
    75. sbequ12
    76. sbequ12r
    77. sbelx
    78. sbequ12a
    79. sbid
    80. sbcov
    81. sbcovOLD
    82. sb6a
    83. sbid2vw
    84. axc16g
    85. axc16
    86. axc16gb
    87. axc16nf
    88. axc11v
    89. axc11rv
    90. drsb2
    91. equsalv
    92. equsexv
    93. equsexvOLD
    94. sbft
    95. sbf
    96. sbf2
    97. sbh
    98. hbs1
    99. nfs1f
    100. sb5
    101. equs5av
    102. 2sb5
    103. dfsb7
    104. sbn
    105. sbex
    106. nf5
    107. nf6
    108. nf5d
    109. nf5di
    110. 19.9h
    111. 19.21h
    112. 19.23h
    113. exlimih
    114. exlimdh
    115. equsalhw
    116. equsexhv
    117. hba1
    118. hbnt
    119. hbn
    120. hbnd
    121. hbim1
    122. hbimd
    123. hbim
    124. hban
    125. hb3an
    126. sbi2
    127. sbim
    128. sbrim
    129. sbrimOLD
    130. sblim
    131. sbor
    132. sbbi
    133. sblbis
    134. sbrbis
    135. sbrbif
    136. sbnf
    137. sbnfOLD
    138. sbiev
    139. sbievOLD
    140. sbiedw
    141. axc7
    142. axc7e
    143. modal-b
    144. 19.9ht
    145. axc4
    146. axc4i
    147. nfal
    148. nfex
    149. hbex
    150. nfnf
    151. 19.12
    152. nfald
    153. nfexd
    154. nfsbv
    155. sbco2v
    156. aaan
    157. aaanOLD
    158. eeor
    159. eeorOLD
    160. cbv3v
    161. cbv1v
    162. cbv2w
    163. cbvaldw
    164. cbvexdw
    165. cbv3hv
    166. cbvalv1
    167. cbvexv1
    168. cbval2v
    169. cbvex2v
    170. dvelimhw
    171. pm11.53
    172. 19.12vv
    173. eean
    174. eeanv
    175. eeeanv
    176. ee4anv
    177. ee4anvOLD
    178. sb8v
    179. sb8f
    180. sb8fOLD
    181. sb8ef
    182. 2sb8ef
    183. sb6rfv
    184. sbnf2
    185. exsb
    186. 2exsb
    187. sbbib
    188. sbbibvv
    189. cbvsbvf
    190. cleljustALT
    191. cleljustALT2
    192. equs5aALT
    193. equs5eALT
    194. axc11r
    195. dral1v
    196. dral1vOLD
    197. drex1v
    198. drnf1v
    199. drnf1vOLD
  4. Axiom scheme ax-13 (Quantified Equality)
    1. ax-13
    2. ax13v
    3. ax13lem1
    4. ax13
    5. ax13lem2
    6. nfeqf2
    7. dveeq2
    8. nfeqf1
    9. dveeq1
    10. nfeqf
    11. axc9
    12. ax6e
    13. ax6
    14. axc10
    15. spimt
    16. spim
    17. spimed
    18. spime
    19. spimv
    20. spimvALT
    21. spimev
    22. spv
    23. spei
    24. chvar
    25. chvarv
    26. cbv3
    27. cbval
    28. cbvex
    29. cbvalv
    30. cbvexv
    31. cbv1
    32. cbv2
    33. cbv3h
    34. cbv1h
    35. cbv2h
    36. cbvald
    37. cbvexd
    38. cbvaldva
    39. cbvexdva
    40. cbval2
    41. cbvex2
    42. cbval2vv
    43. cbvex2vv
    44. cbvex4v
    45. equs4
    46. equsal
    47. equsex
    48. equsexALT
    49. equsalh
    50. equsexh
    51. axc15
    52. ax12
    53. ax12b
    54. ax13ALT
    55. axc11n
    56. aecom
    57. aecoms
    58. naecoms
    59. axc11
    60. hbae
    61. hbnae
    62. nfae
    63. nfnae
    64. hbnaes
    65. axc16i
    66. axc16nfALT
    67. dral2
    68. dral1
    69. dral1ALT
    70. drex1
    71. drex2
    72. drnf1
    73. drnf2
    74. nfald2
    75. nfexd2
    76. exdistrf
    77. dvelimf
    78. dvelimdf
    79. dvelimh
    80. dvelim
    81. dvelimv
    82. dvelimnf
    83. dveeq2ALT
    84. equvini
    85. equvel
    86. equs5a
    87. equs5e
    88. equs45f
    89. equs5
    90. dveel1
    91. dveel2
    92. axc14
    93. sb6x
    94. sbequ5
    95. sbequ6
    96. sb5rf
    97. sb6rf
    98. ax12vALT
    99. 2ax6elem
    100. 2ax6e
    101. 2sb5rf
    102. 2sb6rf
    103. sbel2x
    104. sb4b
    105. sb3b
    106. sb3
    107. sb1
    108. sb2
    109. sb4a
    110. dfsb1
    111. hbsb2
    112. nfsb2
    113. hbsb2a
    114. sb4e
    115. hbsb2e
    116. hbsb3
    117. nfs1
    118. axc16ALT
    119. axc16gALT
    120. equsb1
    121. equsb2
    122. dfsb2
    123. dfsb3
    124. drsb1
    125. sb2ae
    126. sb6f
    127. sb5f
    128. nfsb4t
    129. nfsb4
    130. sbequ8
    131. sbie
    132. sbied
    133. sbiedv
    134. 2sbiev
    135. sbcom3
    136. sbco
    137. sbid2
    138. sbid2v
    139. sbidm
    140. sbco2
    141. sbco2d
    142. sbco3
    143. sbcom
    144. sbtrt
    145. sbtr
    146. sb8
    147. sb8e
    148. sb9
    149. sb9i
    150. sbhb
    151. nfsbd
    152. nfsb
    153. hbsb
    154. sb7f
    155. sb7h
    156. sb10f
    157. sbal1
    158. sbal2
    159. 2sb8e