Metamath Proof Explorer


Theorem 0elpw

Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007)

Ref Expression
Assertion 0elpw 𝒫A

Proof

Step Hyp Ref Expression
1 0ss A
2 0ex V
3 2 elpw 𝒫AA
4 1 3 mpbir 𝒫A