Metamath Proof Explorer


Theorem 0iin

Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion 0iin xA=V

Proof

Step Hyp Ref Expression
1 df-iin xA=y|xyA
2 vex yV
3 ral0 xyA
4 2 3 2th yVxyA
5 4 eqabi V=y|xyA
6 1 5 eqtr4i xA=V