Metamath Proof Explorer


Theorem 19.41rgVD

Description: Virtual deduction proof of 19.41rg . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg is 19.41rgVD without virtual deductions and was automatically derived from 19.41rgVD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

1:: |- ( ps -> ( ph -> ( ph /\ ps ) ) )
2:1: |- ( ( ps -> A. x ps ) -> ( ps -> ( ph -> ( ph /\ ps ) ) ) )
3:2: |- A. x ( ( ps -> A. x ps ) -> ( ps -> ( ph -> ( ph /\ ps ) ) ) )
4:3: |- ( A. x ( ps -> A. x ps ) -> ( A. x ps -> A. x ( ph -> ( ph /\ ps ) ) ) )
5:: |- (. A. x ( ps -> A. x ps ) ->. A. x ( ps -> A. x ps ) ).
6:4,5: |- (. A. x ( ps -> A. x ps ) ->. ( A. x ps -> A. x ( ph -> ( ph /\ ps ) ) ) ).
7:: |- (. A. x ( ps -> A. x ps ) ,. A. x ps ->. A. x ps ).
8:6,7: |- (. A. x ( ps -> A. x ps ) ,. A. x ps ->. A. x ( ph -> ( ph /\ ps ) ) ).
9:8: |- (. A. x ( ps -> A. x ps ) ,. A. x ps ->. ( E. x ph -> E. x ( ph /\ ps ) ) ).
10:9: |- (. A. x ( ps -> A. x ps ) ->. ( A. x ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) ).
11:5: |- (. A. x ( ps -> A. x ps ) ->. ( ps -> A. x ps ) ).
12:10,11: |- (. A. x ( ps -> A. x ps ) ->. ( ps -> ( E. x ph -> E. x ( ph /\ ps ) ) ) ).
13:12: |- (. A. x ( ps -> A. x ps ) ->. ( E. x ph -> ( ps -> E. x ( ph /\ ps ) ) ) ).
14:13: |- (. A. x ( ps -> A. x ps ) ->. ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) ) ).
qed:14: |- ( A. x ( ps -> A. x ps ) -> ( ( E. x ph /\ ps ) -> E. x ( ph /\ ps ) ) )

Ref Expression
Assertion 19.41rgVD xψxψxφψxφψ

Proof

Step Hyp Ref Expression
1 idn1 xψxψxψxψ
2 pm3.2 φψφψ
3 2 com12 ψφφψ
4 3 a1i ψxψψφφψ
5 4 ax-gen xψxψψφφψ
6 al2im xψxψψφφψxψxψxψxφφψ
7 5 6 e0a xψxψxψxφφψ
8 1 7 e1a xψxψxψxφφψ
9 idn2 xψxψ,xψxψ
10 id xψxφφψxψxφφψ
11 8 9 10 e12 xψxψ,xψxφφψ
12 exim xφφψxφxφψ
13 11 12 e2 xψxψ,xψxφxφψ
14 13 in2 xψxψxψxφxφψ
15 sp xψxψψxψ
16 1 15 e1a xψxψψxψ
17 imim2 xψxφxφψψxψψxφxφψ
18 14 16 17 e11 xψxψψxφxφψ
19 pm2.04 ψxφxφψxφψxφψ
20 18 19 e1a xψxψxφψxφψ
21 pm3.31 xφψxφψxφψxφψ
22 20 21 e1a xψxψxφψxφψ
23 22 in1 xψxψxφψxφψ