Metamath Proof Explorer


Theorem 1onn

Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 1onnALT . Lemma 2.2 of Schloeder p. 4. (Contributed by NM, 29-Oct-1995) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 1onn 1𝑜ω

Proof

Step Hyp Ref Expression
1 1on 1𝑜On
2 1ellim Limx1𝑜x
3 2 ax-gen xLimx1𝑜x
4 elom 1𝑜ω1𝑜OnxLimx1𝑜x
5 1 3 4 mpbir2an 1𝑜ω