Metamath Proof Explorer


Theorem 2pm13.193

Description: pm13.193 for two variables. pm13.193 is Theorem *13.193 in WhiteheadRussell p. 179. Derived from 2pm13.193VD . (Contributed by Alan Sare, 8-Feb-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 2pm13.193 x=uy=vuxvyφx=uy=vφ

Proof

Step Hyp Ref Expression
1 simpll x=uy=vuxvyφx=u
2 simplr x=uy=vuxvyφy=v
3 simpr x=uy=vuxvyφuxvyφ
4 sbequ2 x=uuxvyφvyφ
5 1 3 4 sylc x=uy=vuxvyφvyφ
6 sbequ2 y=vvyφφ
7 2 5 6 sylc x=uy=vuxvyφφ
8 1 2 7 jca31 x=uy=vuxvyφx=uy=vφ
9 simpll x=uy=vφx=u
10 simplr x=uy=vφy=v
11 simpr x=uy=vφφ
12 sbequ1 y=vφvyφ
13 10 11 12 sylc x=uy=vφvyφ
14 sbequ1 x=uvyφuxvyφ
15 9 13 14 sylc x=uy=vφuxvyφ
16 9 10 15 jca31 x=uy=vφx=uy=vuxvyφ
17 8 16 impbii x=uy=vuxvyφx=uy=vφ