Metamath Proof Explorer


Theorem 2rexbidva

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypothesis 2ralbidva.1 φxAyBψχ
Assertion 2rexbidva φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 2ralbidva.1 φxAyBψχ
2 1 anassrs φxAyBψχ
3 2 rexbidva φxAyBψyBχ
4 3 rexbidva φxAyBψxAyBχ