Metamath Proof Explorer


Theorem 2rexbiia

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis 2rexbiia.1 xAyBφψ
Assertion 2rexbiia xAyBφxAyBψ

Proof

Step Hyp Ref Expression
1 2rexbiia.1 xAyBφψ
2 1 rexbidva xAyBφyBψ
3 2 rexbiia xAyBφxAyBψ