Metamath Proof Explorer


Theorem 2sbievw

Description: Conversion of double implicit substitution to explicit substitution. Version of 2sbiev with more disjoint variable conditions, requiring fewer axioms. (Contributed by AV, 29-Jul-2023) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis 2sbievw.1 x=ty=uφψ
Assertion 2sbievw txuyφψ

Proof

Step Hyp Ref Expression
1 2sbievw.1 x=ty=uφψ
2 1 sbiedvw x=tuyφψ
3 2 sbievw txuyφψ