Metamath Proof Explorer


Theorem 6p2e8

Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 6p2e8 6+2=8

Proof

Step Hyp Ref Expression
1 df-2 2=1+1
2 1 oveq2i 6+2=6+1+1
3 6cn 6
4 ax-1cn 1
5 3 4 4 addassi 6+1+1=6+1+1
6 2 5 eqtr4i 6+2=6+1+1
7 df-7 7=6+1
8 7 oveq1i 7+1=6+1+1
9 6 8 eqtr4i 6+2=7+1
10 df-8 8=7+1
11 9 10 eqtr4i 6+2=8