Metamath Proof Explorer


Theorem abciffcbatnabciffncba

Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Assertion abciffcbatnabciffncba ¬φψχ¬χψφ

Proof

Step Hyp Ref Expression
1 an31 φψχχψφ
2 notbi φψχχψφ¬φψχ¬χψφ
3 2 biimpi φψχχψφ¬φψχ¬χψφ
4 1 3 ax-mp ¬φψχ¬χψφ
5 4 biimpi ¬φψχ¬χψφ