Metamath Proof Explorer


Theorem abrexex

Description: Existence of a class abstraction of existentially restricted sets. See the comment of abrexexg . See also abrexex2 . (Contributed by NM, 16-Oct-2003) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis abrexex.1 AV
Assertion abrexex y|xAy=BV

Proof

Step Hyp Ref Expression
1 abrexex.1 AV
2 abrexexg AVy|xAy=BV
3 1 2 ax-mp y|xAy=BV