Metamath Proof Explorer


Theorem abrexex2

Description: Existence of an existentially restricted class abstraction. ph normally has free-variable parameters x and y . See also abrexex . (Contributed by NM, 12-Sep-2004)

Ref Expression
Hypotheses abrexex2.1 AV
abrexex2.2 y|φV
Assertion abrexex2 y|xAφV

Proof

Step Hyp Ref Expression
1 abrexex2.1 AV
2 abrexex2.2 y|φV
3 2 rgenw xAy|φV
4 abrexex2g AVxAy|φVy|xAφV
5 1 3 4 mp2an y|xAφV