Metamath Proof Explorer


Theorem absred

Description: Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis resqrcld.1 φA
Assertion absred φA=A2

Proof

Step Hyp Ref Expression
1 resqrcld.1 φA
2 absre AA=A2
3 1 2 syl φA=A2