Metamath Proof Explorer


Theorem aevdemo

Description: Proof illustrating the comment of aev2 . (Contributed by BJ, 30-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion aevdemo xx=yabc=def=ghi=jk=l

Proof

Step Hyp Ref Expression
1 aev xx=yef=g
2 1 19.2d xx=yef=g
3 2 olcd xx=yabc=def=g
4 aev xx=ymm=n
5 aeveq mm=nk=l
6 5 a1d mm=ni=jk=l
7 6 alrimiv mm=nhi=jk=l
8 4 7 syl xx=yhi=jk=l
9 3 8 jca xx=yabc=def=ghi=jk=l