Metamath Proof Explorer


Theorem afv2prc

Description: A function's value at a proper class is not defined, compare with fvprc . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2prc ¬AVF''''AranF

Proof

Step Hyp Ref Expression
1 prcnel ¬AV¬AdomF
2 ndmafv2nrn ¬AdomFF''''AranF
3 1 2 syl ¬AVF''''AranF