Metamath Proof Explorer


Theorem aiotajust

Description: Soundness justification theorem for df-aiota . (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion aiotajust y | x | φ = y = z | x | φ = z

Proof

Step Hyp Ref Expression
1 sneq y = w y = w
2 1 eqeq2d y = w x | φ = y x | φ = w
3 2 cbvabv y | x | φ = y = w | x | φ = w
4 sneq w = z w = z
5 4 eqeq2d w = z x | φ = w x | φ = z
6 5 cbvabv w | x | φ = w = z | x | φ = z
7 3 6 eqtri y | x | φ = y = z | x | φ = z
8 7 inteqi y | x | φ = y = z | x | φ = z