Metamath Proof Explorer


Theorem atncmp

Description: Frequently-used variation of atcmp . (Contributed by NM, 29-Jun-2012)

Ref Expression
Hypotheses atcmp.l ˙=K
atcmp.a A=AtomsK
Assertion atncmp KAtLatPAQA¬P˙QPQ

Proof

Step Hyp Ref Expression
1 atcmp.l ˙=K
2 atcmp.a A=AtomsK
3 1 2 atcmp KAtLatPAQAP˙QP=Q
4 3 necon3bbid KAtLatPAQA¬P˙QPQ