Metamath Proof Explorer


Axiom ax-ac2

Description: In order to avoid uses of ax-reg for derivation of AC equivalents, we provide ax-ac2 , which is equivalent to the standard AC of textbooks. This appears to be the shortest known equivalent to the standard AC when expressed in terms of set theory primitives. It was found by Kurt Maes as Theorem ackm . We removed the leading quantifier to make it slightly shorter, since we have ax-gen available. The derivation of ax-ac2 from ax-ac is shown by Theorem axac2 , and the reverse derivation by axac . Note that we use ax-reg to derive ax-ac from ax-ac2 , but not to derive ax-ac2 from ax-ac . (Contributed by NM, 19-Dec-2016)

Ref Expression
Assertion ax-ac2 yzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy setvary
1 vz setvarz
2 vv setvarv
3 vu setvaru
4 0 cv setvary
5 vx setvarx
6 5 cv setvarx
7 4 6 wcel wffyx
8 1 cv setvarz
9 8 4 wcel wffzy
10 2 cv setvarv
11 10 6 wcel wffvx
12 4 10 wceq wffy=v
13 12 wn wff¬y=v
14 11 13 wa wffvx¬y=v
15 8 10 wcel wffzv
16 14 15 wa wffvx¬y=vzv
17 9 16 wi wffzyvx¬y=vzv
18 7 17 wa wffyxzyvx¬y=vzv
19 7 wn wff¬yx
20 8 6 wcel wffzx
21 10 8 wcel wffvz
22 10 4 wcel wffvy
23 21 22 wa wffvzvy
24 3 cv setvaru
25 24 8 wcel wffuz
26 24 4 wcel wffuy
27 25 26 wa wffuzuy
28 24 10 wceq wffu=v
29 27 28 wi wffuzuyu=v
30 23 29 wa wffvzvyuzuyu=v
31 20 30 wi wffzxvzvyuzuyu=v
32 19 31 wa wff¬yxzxvzvyuzuyu=v
33 18 32 wo wffyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
34 33 3 wal wffuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
35 34 2 wex wffvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
36 35 1 wal wffzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
37 36 0 wex wffyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v