Metamath Proof Explorer


Theorem ax12inda2

Description: Induction step for constructing a substitution instance of ax-c15 without using ax-c15 . Quantification case. When z and y are distinct, this theorem avoids the dummy variables needed by the more general ax12inda . (Contributed by NM, 24-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12inda2.1 ¬xx=yx=yφxx=yφ
Assertion ax12inda2 ¬xx=yx=yzφxx=yzφ

Proof

Step Hyp Ref Expression
1 ax12inda2.1 ¬xx=yx=yφxx=yφ
2 ax-1 zφx=yzφ
3 axc16g-o yy=zx=yzφxx=yzφ
4 2 3 syl5 yy=zzφxx=yzφ
5 4 a1d yy=zx=yzφxx=yzφ
6 5 a1d yy=z¬xx=yx=yzφxx=yzφ
7 1 ax12indalem ¬yy=z¬xx=yx=yzφxx=yzφ
8 6 7 pm2.61i ¬xx=yx=yzφxx=yzφ