Metamath Proof Explorer


Theorem ax2

Description: Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax2 φψχφψφχ

Proof

Step Hyp Ref Expression
1 luklem7 φψχψφχ
2 luklem8 ψφχφψφφχ
3 luklem6 φφχφχ
4 luklem8 φφχφχφψφφχφψφχ
5 3 4 ax-mp φψφφχφψφχ
6 2 5 luklem1 ψφχφψφχ
7 1 6 luklem1 φψχφψφχ