Metamath Proof Explorer


Theorem ax5eq

Description: Theorem to add distinct quantifier to atomic formula. (This theorem demonstrates the induction basis for ax-5 considered as a metatheorem. Do not use it for later proofs - use ax-5 instead, to avoid reference to the redundant axiom ax-c16 .) (Contributed by NM, 10-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax5eq x=yzx=y

Proof

Step Hyp Ref Expression
1 ax-c9 ¬zz=x¬zz=yx=yzx=y
2 ax-c16 zz=xx=yzx=y
3 ax-c16 zz=yx=yzx=y
4 1 2 3 pm2.61ii x=yzx=y