Metamath Proof Explorer


Theorem axc5c7

Description: Proof of a single axiom that can replace ax-c5 and ax-c7 . See axc5c7toc5 and axc5c7toc7 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c7 x¬xφxφφ

Proof

Step Hyp Ref Expression
1 ax-c7 ¬x¬xφφ
2 ax-c5 xφφ
3 1 2 ja x¬xφxφφ