Metamath Proof Explorer


Theorem axhvdistr1-zf

Description: Derive Axiom ax-hvdistr1 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U=+norm
axhil.2 UCHilOLD
Assertion axhvdistr1-zf ABCAB+C=AB+AC

Proof

Step Hyp Ref Expression
1 axhil.1 U=+norm
2 axhil.2 UCHilOLD
3 df-hba =BaseSet+norm
4 1 fveq2i BaseSetU=BaseSet+norm
5 3 4 eqtr4i =BaseSetU
6 2 hlnvi UNrmCVec
7 1 6 h2hva +=+vU
8 1 6 h2hsm =𝑠OLDU
9 5 7 8 hldi UCHilOLDABCAB+C=AB+AC
10 2 9 mpan ABCAB+C=AB+AC