Metamath Proof Explorer


Theorem axi5r

Description: Converse of axc4 (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017)

Ref Expression
Assertion axi5r xφxψxxφψ

Proof

Step Hyp Ref Expression
1 hba1 xφxxφ
2 hba1 xψxxψ
3 1 2 hbim xφxψxxφxψ
4 sp xψψ
5 4 imim2i xφxψxφψ
6 3 5 alrimih xφxψxxφψ