Metamath Proof Explorer


Theorem bnj525

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj525.1 AV
Assertion bnj525 [˙A/x]˙φφ

Proof

Step Hyp Ref Expression
1 bnj525.1 AV
2 sbcg AV[˙A/x]˙φφ
3 1 2 ax-mp [˙A/x]˙φφ